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Anatomy of the spine

❖ MRI sagittal slice

Vertebral
Body

Intervertebral
Disc

Vertebral
Arch

Vertebra

Lumbar
Spine
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Vertebral compression
fractures (VCFs)

❖ Partial collapse of vertebral bodies

❖ Traumatic VCFs raise no doubt about 

their etiology

❖But a recent vertebral collapse without
history of significant trauma creates
difficulty in defining the cause of the VCF
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Medical diagnosis

• Young patient with a VCF

• History of significant acute trauma

• Usually easy diagnosis
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Medical diagnosis

• Elderly patient with VCF

• No history of significant acute trauma

• Diagnosis ?
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VCFs without history of
significant trauma

❖VCFs are the most common type of
osteoporotic fractures

❖The elderly have a high incidence of VCFs
related to metastatic cancer affecting bone

❖MRI is the most commonly used imaging
method for spinal diseases and early
detection of fractures
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Osteoporotic
VCF

Metastatic
VCF

T1-Weighted
MRI



Clinical classification
of VCFs

❖Osteoporotic VCFs

➢ classified as Benign VCFs

❖Metastatic VCFs

➢ classified as Malignant VCFs
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Benign VCFs in 
T1-weighted MRI

❖ Partial preservation of normal fatty bone-
marrow signal in the vertebral body

❖ Spatially limited loss of T1 signal intensity

❖Degeneration of normally rectangular
shapes of vertebrae into concave and rough
shapes with indentations

❖Rougher contours than malignant VCFs and
normal vertebrae
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Malignant VCFs in 
T1-weighted MRI

❖Reduction of T1 signal intensity or nodular 
abnormality all over the affected vertebra

❖Could result in a posterior convexity without 
substantial concavities

❖May also cause the contours of vertebrae to 
be relatively smoothened due to convexity
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Normal Benign VCFs Malignant VCFs



Benign vs Malignant
VCFs

❖Both tend to create concavities in the 
vertebral plateaus

❖Could cause doubt in the diagnosis

❖Correct classification is critical for planning 
treatment

UNIVERSIDADE DE 

SÃO PAULO



Malignant VCF

Benign VCF

Which image has the malignant VCF 
and which one has the benign VCF?



Objectives

❖ Study the characteristics of VCFs in MRI

❖ Develop image processing techniques to extract
features

❖ Classify VCFs
Normal

Fractured

Benign

Malignant
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Study steps

❖ Selection of cases and images

❖Manual segmentation of vertebral bodies

❖ Extraction of features of vertebral bodies

❖Classification, validation, and statistical
analysis
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Database

❖University Hospital of Ribeirão Preto Medical 
School – University of São Paulo

❖Cases and images collected from the
Radiology Information System (RIS)

❖Cases from September 2010 to March 2014

❖ Philips 1.5T MRI System – T1-weighted MRI
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Database

❖ Lumbar vertebral bodies (L1 to L5)

❖Median sagittal slice

❖ TIFF images with 8-bits/pixel

❖ 153 exams analyzed, 63 selected

❖ 38 women, 25 men

❖Mean age: 62 years
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Database

❖ 63 selected exams:

➢ At least one VCF per patient

➢ The nonfractured vertebral bodies of patients
without malignant fractures are considered to
be normal
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Excluded cases

❖Vertebral fractures secondary to trauma

❖ Infection and avascular necrosis

❖ Severe degenerative scoliosis

❖ Previous surgeries, radiotherapy, and
chemotherapy

UNIVERSIDADE DE 

SÃO PAULO



Database

L5 L4 L3 L2 L1 Total

Benign VCFs 6 7 9 10 21 53

Malignant VCFs 9 11 10 10 9 49

Normal 26 24 23 22 11 106

Total 41 42 42 42 41 208
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Examples of
vertebral bodies

Normal

Benign VCFs

Malignant VCFs
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Manual segmentation

MRI exam Vertebral body masks

UNIVERSIDADE DE 

SÃO PAULO



Software flow chart UNIVERSIDADE DE 
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MRI exam and its mask
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Detection of the coordinates
of the vertebral bodies

L5

L4

L3

L2

L1
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Normalization
of the MR images

. 5x5 disc block

Extraction of blocks of
intervertebral discs

using the mask ROIs as reference
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DiscsMean



Normalization
of the MR images

𝑛𝑒𝑤𝐼𝑚𝑔 𝑖, 𝑗 =
𝑖𝑚𝑔𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑖, 𝑗)

𝑑𝑖𝑠𝑐𝑠𝑀𝑒𝑎𝑛

𝒊𝒎𝒈𝑵𝒐𝒓𝒎 𝒊, 𝒋 = 255 ×
𝑛𝑒𝑤𝐼𝑚𝑔 𝑖, 𝑗 − min 𝑛𝑒𝑤𝐼𝑚𝑔

max 𝑛𝑒𝑤𝐼𝑚𝑔 −min 𝑛𝑒𝑤𝐼𝑚𝑔

UNIVERSIDADE DE 

SÃO PAULO



MRI exam ∩ Mask

∩

Processing new image...
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Detection of the
ROIs
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ROIs of the
vertebral bodies UNIVERSIDADE DE 
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Normal

Benign VCFs

Malignant VCFs



Computation of the
features

❖ 3 Statistical gray-level features

❖ 14 Texture features

❖ 10 Shape features

27 Features

UNIVERSIDADE DE 

SÃO PAULO



Statistical gray-level
features

Coefficient of
variation

Skewness

Kurtosis
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Statistical gray-level
features

❖Coefficient of variation (CV )

𝐶𝑉 =
𝜎

𝜇

𝜇 = 

𝑙=0

𝐿−1

𝑙 𝑝(𝑙)

𝜎 = 

𝑙=0

𝐿−1

𝑙 − 𝜇 2 𝑝(𝑙)
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l = gray level, [0, L-1]

p(l) = probability of occurrence of gray level l



Statistical gray-level
features

❖ Skewness

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝜎3


𝑙=0

𝐿−1

(𝑙 − 𝜇)3 𝑝(𝑙)
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Statistical gray-level 
features

❖Kurtosis

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝜎4


𝑙=0

𝐿−1

(𝑙 − 𝜇)4 𝑝(𝑙)
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Differences in texture
between normal and VCFs UNIVERSIDADE DE 
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Malignant VCF

Malignant VCF

Malignant VCF

Malignant VCF

Normal

Benign VCF



Texture features

Gray-level

cooccurrence matrix

14 texture features of

Haralick et al.
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Cooccurrence matrix

0 0 1 0 0

0 1 2 1 0

1 2 2 2 1

0 1 2 1 0

0 0 1 0 0

Ex: Image 5x5 pixels,
3 gray levels

0 1 2

2 2 4

2 4 2

4 2 2

Distance = 1 pixel

Angle = ±45°

0 1 2

0

1

2

Number of pixels of intensity 0 that
are at ±45 degrees and distance 1 

of pixels of intensity 2
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Cooccurrence matrix 𝑝 𝑖, 𝑗 for

𝑖 = 0, 𝑗 = 2



14 texture features
of Haralick et al.

❖Angular second moment (Energy)

𝑓1 =

𝑖



𝑗

𝑝(𝑖, 𝑗) 2

❖Contrast

𝑓2 = 

𝑛=0

𝑁𝑔−1

𝑛2 

𝑖=1

𝑁𝑔



𝑗=1

𝑁𝑔

𝑝 𝑖, 𝑗 ; 𝑛 = |𝑖 − 𝑗|
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𝑁𝑔: number of gray levels in the quantized image

p(i,j):  normalized to probability density function



❖Correlation

𝑓3 =
σ𝑖σ𝑗 𝑖𝑗 𝑝 𝑖, 𝑗 − 𝜇𝑥 𝜇𝑦

𝜎𝑥 𝜎𝑦

UNIVERSIDADE DE 
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14 texture features
of Haralick et al.



14 texture features
of Haralick et al.

❖ 𝜇𝑥 , 𝜇𝑦 means

❖𝜎𝑥 , 𝜎𝑦 standard deviations
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𝑝𝑦 𝑗 = 

𝑖=1

𝑁𝑔

𝑝 𝑖, 𝑗𝑝𝑥 𝑖 = 

𝑗=1

𝑁𝑔

𝑝 𝑖, 𝑗



❖ Sum of squares: Variance

𝑓4 =

𝑖



𝑗

𝑖 − 𝜇 2 𝑝(𝑖, 𝑗)
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14 texture features
of Haralick et al.



❖ Inverse difference moment

𝑓5 =

𝑖



𝑗

1

1 + 𝑖 − 𝑗 2
𝑝(𝑖, 𝑗)
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14 texture features
of Haralick et al.



❖ Sum average

❖ Sum variance

𝑓6 = 

𝑖=2

2𝑁𝑔

𝑖 𝑝𝑥+𝑦 (𝑖)

𝑓7 = 

𝑖=2

2𝑁𝑔

𝑖 − 𝑓6
2 𝑝𝑥+𝑦(𝑖)
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14 texture features
of Haralick et al.
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14 texture features
of Haralick et al.

𝑝𝑥+𝑦 𝑘 = 

𝑖=1

𝑁𝑔



𝑗=1

𝑁𝑔

𝑝(𝑖, 𝑗) 𝑘 = 2,3, … , 2𝑁𝑔

𝑘 = 𝑖 + 𝑗



❖ Sum entropy

❖ Entropy

𝑓8 = −

𝑖=2

2𝑁𝑔

𝑝𝑥+𝑦(𝑖) log 𝑝𝑥+𝑦 𝑖

𝑓9 = −

𝑖



𝑗

𝑝 𝑖, 𝑗 log 𝑝 𝑖, 𝑗
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14 texture features
of Haralick et al.



❖Difference variance

❖Difference entropy

𝑓10 = variance of  𝑝𝑥−𝑦

𝑓11 = − 

𝑖=0

𝑁𝑔−1

𝑝𝑥−𝑦(𝑖) log 𝑝𝑥−𝑦(𝑖)
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14 texture features
of Haralick et al.
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14 texture features
of Haralick et al.

𝑝𝑥−𝑦 𝑘 = 

𝑖=1

𝑁𝑔



𝑗=1

𝑁𝑔

𝑝(𝑖, 𝑗) 𝑘 = 0,1, … , 𝑁𝑔 − 1

𝑘 = 𝑖 − 𝑗



❖ Information measures of correlation 1

❖ Information measures of correlation 2

𝑓12 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max 𝐻𝑋,𝐻𝑌

𝑓13 = 1 − exp −2 𝐻𝑋𝑌2 − 𝐻𝑋𝑌 1/2
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14 texture features
of Haralick et al.



𝐻𝑋𝑌 = −

𝑖



𝑗

𝑝 𝑖, 𝑗 log 𝑝 𝑖, 𝑗

𝐻𝑋 and 𝐻𝑌 are entropy of 𝑝𝑥 and 𝑝𝑦

𝐻𝑋𝑌1 = −

𝑖



𝑗

𝑝 𝑖, 𝑗 log 𝑝𝑥 𝑖 𝑝𝑦 𝑗

𝐻𝑋𝑌2 = −

𝑖



𝑗

𝑝𝑥 𝑖 𝑝𝑦 𝑗 log 𝑝𝑥 𝑖 𝑝𝑦 𝑗
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14 texture features
of Haralick et al.



❖Maximal correlation coefficient

𝑓14 = (second largest eigenvalue of 𝑄)1/2

where 𝑄 𝑖, 𝑗 = σ𝑘
𝑝 𝑖,𝑘 𝑝(𝑗,𝑘)

𝑝𝑥 𝑖 𝑝𝑦(𝑘)
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14 texture features
of Haralick et al.



Shape features

❖Compactness 𝐶𝑜

Perimeter P
Vertebral area A
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❖ Fourier-descriptor-based feature FDF

Shape features


−
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−=

1

0
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exp)(
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n

nk
N

jnz
N

kZ


k = -N/2+1, …, -1, 0, 1, 2, …, N/2

z(n) = x(n) + j y(n)

n = 0, 1, ..., N-1
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❖ Fourier-descriptor-based feature FDF

Shape features
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Shape features

❖Convex deficiency CD

Vertebral area VA

𝐶𝐷 =
𝐶𝐻 − 𝑉𝐴

𝑉𝐴
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Convex hull CH



Shape features

𝑚𝑝𝑞

= 

𝑖



𝑗

𝑖𝑝𝑗𝑞𝑖𝑚𝑔 𝑖, 𝑗 , 𝑝, 𝑞 = 0,1,2, …

𝑥 =
𝑚10

𝑚00
𝑦 =

𝑚01

𝑚00

Moments:

UNIVERSIDADE DE 

SÃO PAULO



Shape features

Central Moments:

µ00 = 𝑚00 = µ

µ10 = µ01 = 0

µ20 = 𝑚20 − µ𝑥²

µ11 = 𝑚11 − µ𝑥𝑦

µ02 = 𝑚02 − µ𝑦²

µ30 = 𝑚30 − 3𝑚20𝑥 + 2µ𝑥³

µ21 = 𝑚21 −𝑚20𝑦 − 2𝑚11𝑥 + 2µ𝑥²𝑦

µ12 = 𝑚12 −𝑚02𝑥 − 2𝑚11𝑦 + 2µ𝑥 𝑦²

µ03 = 𝑚03 − 3𝑚02𝑦 + 2µ𝑦³
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Shape features

Seven invariant moments (Hu):

𝑀1 = µ20 + µ02

𝑀2 = (µ20 − µ02)
2+4µ11

2

𝑀3 = (µ30 − 3µ12)
2+(3µ21 − µ03)

2

𝑀4 = (µ30 + µ12)
2+(µ21 + µ03)

2
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Shape features

𝑀5

= µ30 − 3µ12 µ30 + µ12 [ µ30 + µ12
2−3 µ21 + µ03

2]
+ (3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)

2−(µ21 + µ03)
2]

𝑀6

= µ20 − µ02 (µ30 + µ12)
2 − (µ21 + µ03)

2

+ 4µ11 µ30 + µ12 µ21 + µ03

𝑀7

= (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)
2−3(µ21 + µ03)

2] − (µ30
− 3µ12)(µ21 + µ03)[3(µ30 + µ12)

2−(µ21 + µ03)
2]
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Organization of the
feature vector 

Coefficient
of variation

Skewness Kurtosis ... M7

1 2 3 ... 27
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Files of features

L1

L2

L3

L4

L5

txt files

UNIVERSIDADE DE 

SÃO PAULO



Inserting the
reference classification

❖Manual addition of the class

❖Classification according to radiologist and
biopsy

Class
Coefficient
of variation

Skewness Kurtosis ... M7

1 2 3 ..
.

27

NormalVCF

Benign Malignant
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Feature selection

❖ Software WEKA

❖Wrapper method for feature selection

➢ kNN with k = 1, 3, ..., 13

➢ Naïve Bayes

➢ RBF network

❖Best first as search method

➢ Greedy search for the best subset of features
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Classification

❖ Software WEKA

❖Classifiers:

➢ k-nearest neighbor: k = 1, 3, 5, 7, 9, 11, 13

➢ Naïve Bayes

➢ RBF network

❖ Stratified 10-fold cross-validation

➢ 9 folds for training, 1 fold for test
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Clinical Classes

❖VCF vs Normal

❖Benign VCF vs Malignant VCF

❖Malignant VCF, Benign VCF, and Normal
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Validation

❖Confusion Matrix

➢ Sensitivity

➢ Specificity

➢ AUROC

➢% of correct classification
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𝐴𝑧 and p-values UNIVERSIDADE DE 
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❖ p-values obtained using Wilcoxon rank-sum test

❖ NS indicates no significant difference

❖ NA indicates that 𝐴𝑧 could not be obtained

❖ * for 0.01 ≤ p < 0.05

❖ ** for 0.001 ≤ p < 0.01

❖ *** for p < 0.001



𝐴𝑧 and p-values UNIVERSIDADE DE 
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Benign VCF versus 
Malignant VCF

All VCFs together 
versus Normal

Feature Significance 𝑨𝒛 Significance 𝑨𝒛

𝐶𝑉 NS 0.580 *** 0.751

𝑆𝑘𝑒𝑤 *** 0.861 * 0.549

𝐾𝑢𝑟𝑡 *** 0.824 NS 0.532

𝐻1 *** 0.849 NS 0.625

𝐻2 *** 0.866 * 0.661

𝐻3 NS 0.480 NS 0.629

𝐻4 *** 0.874 NS 0.642

𝐻5 *** 0.844 * 0.577

𝐻6 *** 0.829 *** 0.731

𝐻7 *** 0.871 NS 0.640

𝐻8 *** 0.854 ** 0.620

𝐻9 *** 0.858 *** 0.647

𝐻10 *** 0.871 ** 0.674



𝐴𝑧 and p-values UNIVERSIDADE DE 

SÃO PAULO

Benign VCF versus 
Malignant VCF

All VCFs together 
versus Normal

Feature Significance 𝑨𝒛 Significance 𝑨𝒛

H11 *** 0.868 ** 0.632

H12 *** 0.731 NS 0.524

H13 *** 0.854 *** 0.614

H14 NS 0.566 NS 0.462

Co *** 0.722 *** 0.864

FDF *** 0.837 NS 0.449

CD *** 0.700 *** 0.881

M1 NS 0.567 *** 0.964

M2 NS 0.518 *** 0.932

M3 ** 0.655 * 0.887

M4 * 0.617 NS 0.936

M5 NS 0.389 NS NA

M6 NS 0.480 NS 0.498

M7 NS 0.538 NS NA



𝐴𝑧 and p-values UNIVERSIDADE DE 
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Mean and standard 
deviation of features UNIVERSIDADE DE 

SÃO PAULO



Mean and standard 
deviation of features UNIVERSIDADE DE 

SÃO PAULO

❖Mean skewness of malignant VCFs is higher
than that for benign VCFs

➢ T1 signals are distributed more on the lower
side of the histogram for malignant VCFs

❖𝐻6 and 𝐻7 show large differences in their 
mean values for malignant VCFs versus 
benign VCFs



Mean and standard 
deviation of features UNIVERSIDADE DE 
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Feature selection UNIVERSIDADE DE 
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Feature selection UNIVERSIDADE DE 
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❖ k-NN did not select the gray-level features
for benign vs malignant VCFs

➢ 𝐹𝐷𝐹, 𝑀5, 𝐻10, and 𝐻13were selected at least 
three times

❖CV is statistically significant for all VCFs vs
normal vertebral bodies and was selected
for all classifiers



Feature selection UNIVERSIDADE DE 
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❖Various texture features were selected for 
both types of classification

❖Naïve Bayes selected the highest number of
features for both types of classification



Classification UNIVERSIDADE DE 
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Classifier ACC rate % AUROC

k-NN

k = 7 82.4 0.84

k = 9 81.4 0.90

k = 11 84.3 0.90

k = 13 84.3 0.90

Naïve Bayes

RBF network

85.3 0.92

78.4 0.86

Classifier ACC rate % AUROC

k-NN

k = 7 90.1 0.95

k = 9 89.0 0.92

k = 11 89.0 0.92

k = 13 89.5 0.94

Naïve Bayes

RBF network

90.6 0.97

91.1 0.94

❖ Benign vs malignant
VCFs

❖ All VCFs vs normal 
vertebral bodies



Classification UNIVERSIDADE DE 
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❖RBF network classifier for benign vs
malignant VCFs

➢ ACC rate was the lowest obtained

➢ AUROC is only better than that of 7-NN

❖RBF network classifier for all VCFs vs normal 
vertebral bodies

➢ ACC rate is the highest obtained



Classification UNIVERSIDADE DE 
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❖AUROC for classification of all VCFs together 
vs normal vertebral bodies is at least 0.92 

❖AUROC of the naïve Bayes classifier is 0.97 
for this purpose

➢ Better than the previous study using only shape
features in which AUROC was 0.945

❖ This shows the importance of texture and
gray-level features for this purpose



Classification UNIVERSIDADE DE 
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❖AUROC for classification of benign vs 
malignant VCFs is 0.92 for naïve Bayes

➢ Better than the previous study in which the
highest AUROC was 0.91 for 3-NN

❖ In a previous study using only shape
features the highest AUROC was 0.78

➢ This shows the importance of texture and gray-
level features for this purpose



Benign VCFs, malignant VCFs, 
and normal vertebral bodies UNIVERSIDADE DE 

SÃO PAULO

Predicted classification True classification

Malignant VCFs Benign VCFs Normal vertebral bodies

39 5 5 Malignant VCFs

13 35 5 Benign VCFs

4 1 84 Normal vertebral bodies

• Features selected: 
• CV, Skew, H2, H3, H5, H6, H8, H9, H11, H12, 

H13,H14,Co, FDF, CD, M1, M3, and M7 

• Weighted average AUROC of 0.94

• ACC rate of 82.7%



❖Manual segmentation of the vertebral bodies

➢ Automatic segmentation methods could lead to 
the realization of a clinically useful CAD system

❖ Individual and separate analysis of the
vertebral bodies ignores important
information outside their regions

Limitations 
of the study UNIVERSIDADE DE 

SÃO PAULO



❖ The use of only the median sagittal slice

❖ Some lateral VCFs may be misclassified

❖ Extension of segmentation and feature 
extraction methods to 3D is desirable

Limitations 
of the study UNIVERSIDADE DE 

SÃO PAULO



❖Analysis of only T1-weighted MRI

➢ Benign VCFs

• isointense vertebra in T2-weighted and T1-weighted 
MRI after gadolinium contrast 

➢Malignant VCFs

• heterogeneous or high signal in T2-weighted and in 

T1-weighted MRI after gadolinium contrast 

Limitations 
of the study UNIVERSIDADE DE 

SÃO PAULO



❖Most of the features presented are important 
for both types of VCF classification

❖ For benign vs malignant VCFs

➢ AZ  values of texture and gray-level features are 
higher than those shape features

❖ For all VCFs vs normal vertebral bodies

➢ AZ values of shape features are higher than those 
of texture and gray-level features

Conclusion UNIVERSIDADE DE 

SÃO PAULO



❖ The features FDF  and CV follow the 

opposite trend

❖ The naïve Bayes method was the best 
classifier in both types of classification

❖ The proposed methods are promising 

for CAD of VCFs

Conclusion UNIVERSIDADE DE 

SÃO PAULO



❖ Future works:

➢ Evaluate our methods with the inclusion of an
automatic segmentation method

➢ Extend the methods to 3D analysis of vertebral 
bodies 

Conclusion UNIVERSIDADE DE 

SÃO PAULO
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Feature 
selection: 
benign vs 
malignant 

VCFs
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Networkk = 7 k = 9 k = 11 k = 13
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Feature 
selection: 
all VCFs 

vs normal 
vertebral 
bodies
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Feature
k-NN Naïve

Bayes

RBF

Networkk = 7 k = 9 k = 11 k = 13
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