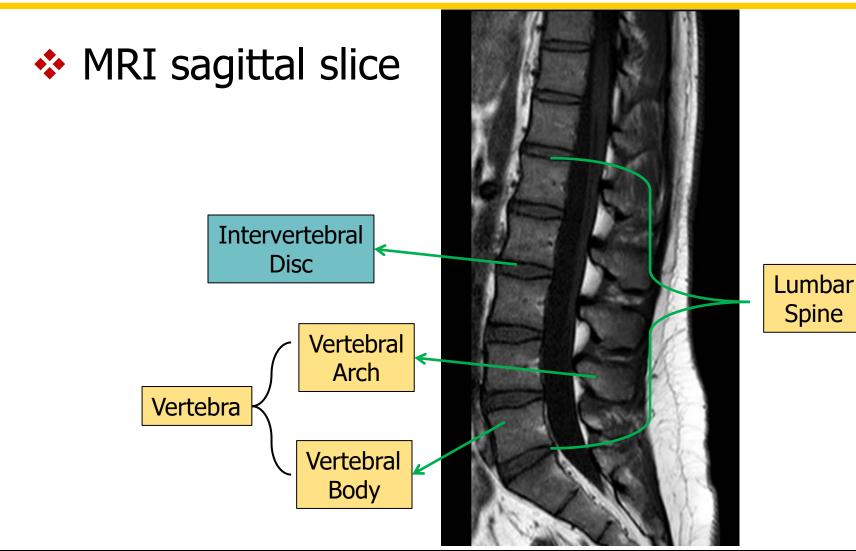
Classification of Benign and Malignant Vertebral Compression Fractures in Magnetic Resonance Images

Lucas Frighetto-Pereira, Guilherme Augusto Metzner, Paulo Mazzoncini de Azevedo-Marques, Rangaraj Mandayam Rangayyan, Marcello Henrique Nogueira-Barbosa



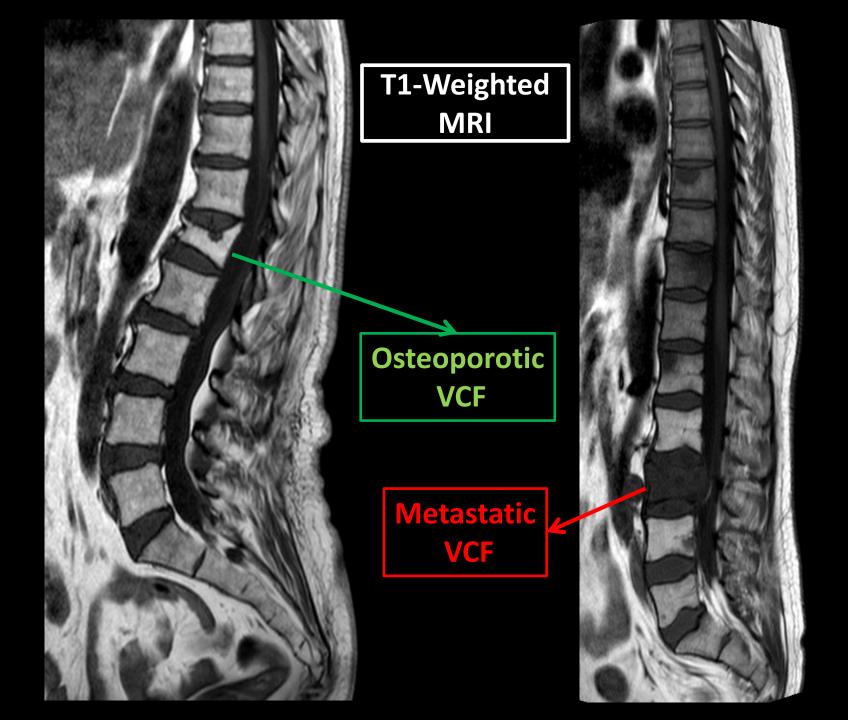
Universidade de São Paulo Brasil

Partial collapse of vertebral bodies

- Traumatic VCFs raise no doubt about their etiology
- But a recent vertebral collapse without history of significant trauma creates difficulty in defining the cause of the VCF

- Young patient with a VCF
- History of significant acute trauma
- Usually easy diagnosis

- Elderly patient with VCF
- No history of significant acute trauma
- Diagnosis ?



VCFs without history of significant trauma

 VCFs are the most common type of osteoporotic fractures

- The elderly have a high incidence of VCFs related to metastatic cancer affecting bone
- MRI is the most commonly used imaging method for spinal diseases and early detection of fractures

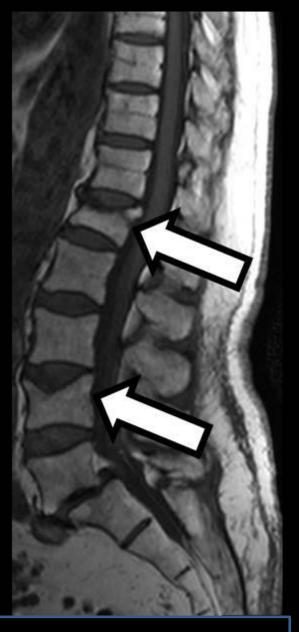
Clinical classification of VCFs

Osteoporotic VCFs
 Classified as Benign VCFs

Metastatic VCFs

> classified as Malignant VCFs

- Partial preservation of normal fatty bonemarrow signal in the vertebral body
- Spatially limited loss of T1 signal intensity
- Degeneration of normally rectangular shapes of vertebrae into concave and rough shapes with indentations
- Rougher contours than malignant VCFs and normal vertebrae

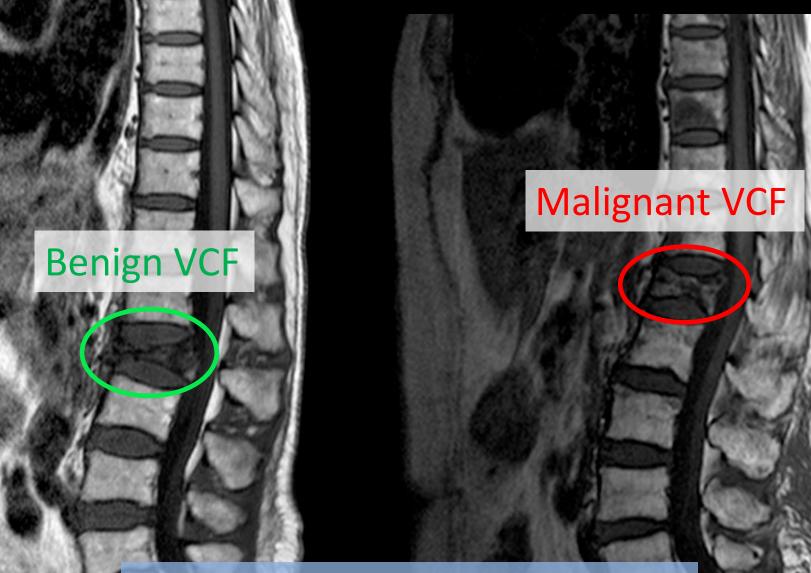


- Reduction of T1 signal intensity or nodular abnormality all over the affected vertebra
- Could result in a posterior convexity without substantial concavities
- May also cause the contours of vertebrae to be relatively smoothened due to convexity

Malignant VCFs

Normal

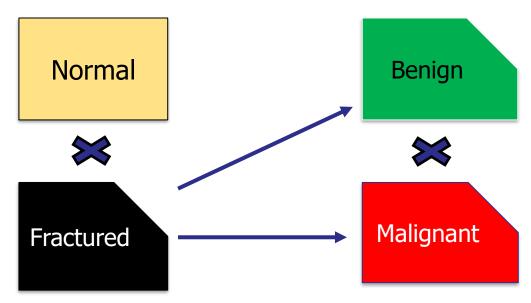
Benign VCFs


Benign vs Malignant VCFs

 Both tend to create concavities in the vertebral plateaus

Could cause doubt in the diagnosis

 Correct classification is critical for planning treatment


Which image has the malignant VCF and which one has the benign VCF?

- Study the characteristics of VCFs in MRI
- Develop image processing techniques to extract features
- Classify VCFs

- Selection of cases and images
- Manual segmentation of vertebral bodies
- Extraction of features of vertebral bodies

 Classification, validation, and statistical analysis

- University Hospital of Ribeirão Preto Medical School – University of São Paulo
- Cases and images collected from the Radiology Information System (RIS)
- Cases from September 2010 to March 2014
- Philips 1.5T MRI System T1-weighted MRI

- Lumbar vertebral bodies (L1 to L5)
- Median sagittal slice
- TIFF images with 8-bits/pixel
- ✤ 153 exams analyzed, 63 selected
- Mean age: 62 years

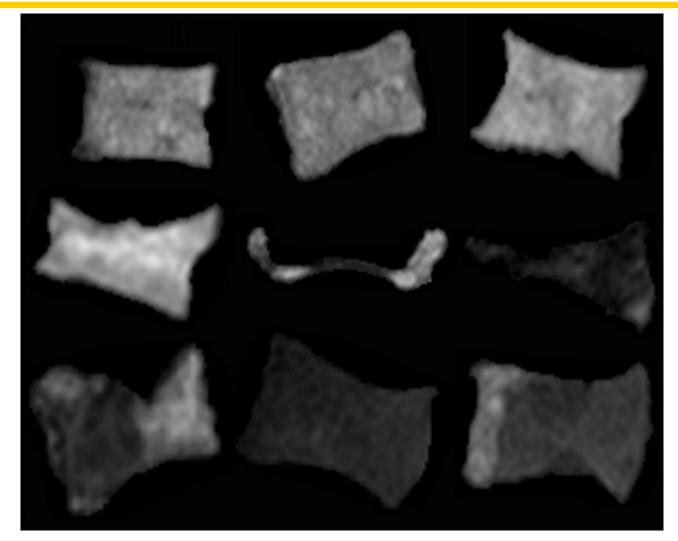
- 63 selected exams:
 - > At least one VCF per patient
 - The nonfractured vertebral bodies of patients without malignant fractures are considered to be normal

Excluded cases

Vertebral fractures secondary to trauma
Infection and avascular necrosis
Severe degenerative scoliosis
Previous surgeries, radiotherapy, and chemotherapy

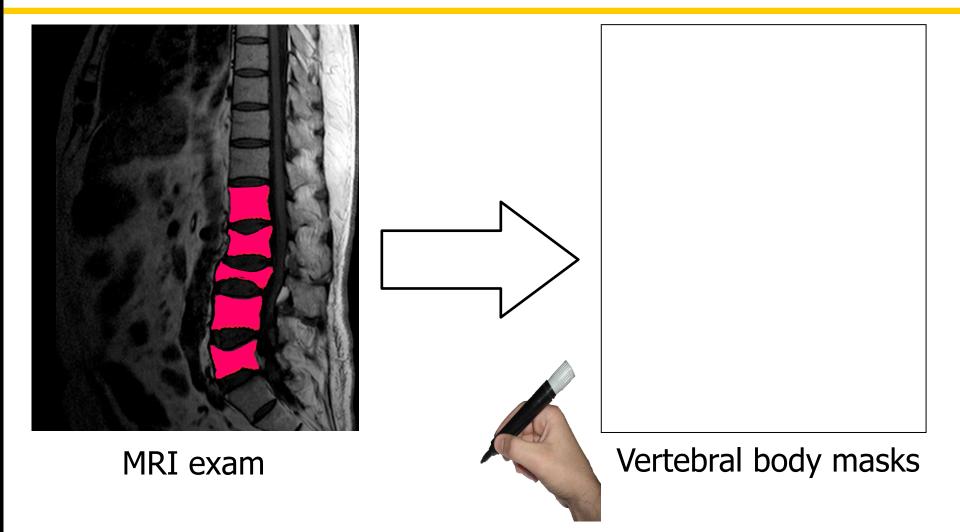
Database

	L5	L4	L3	L2	L1	Total
Benign VCFs	6	7	9	10	21	53
Malignant VCFs	9	11	10	10	9	49
Normal	26	24	23	22	11	106
Total	41	42	42	42	41	208

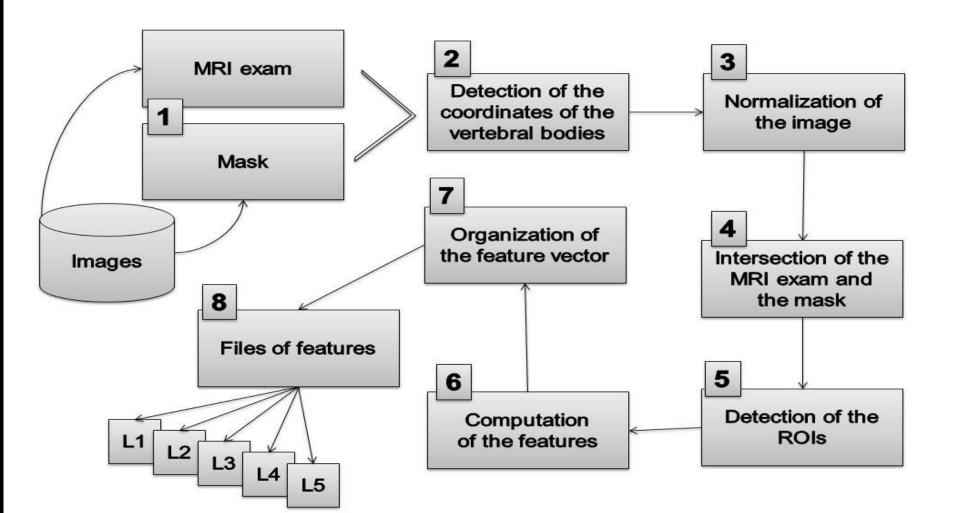

Examples of vertebral bodies

Normal

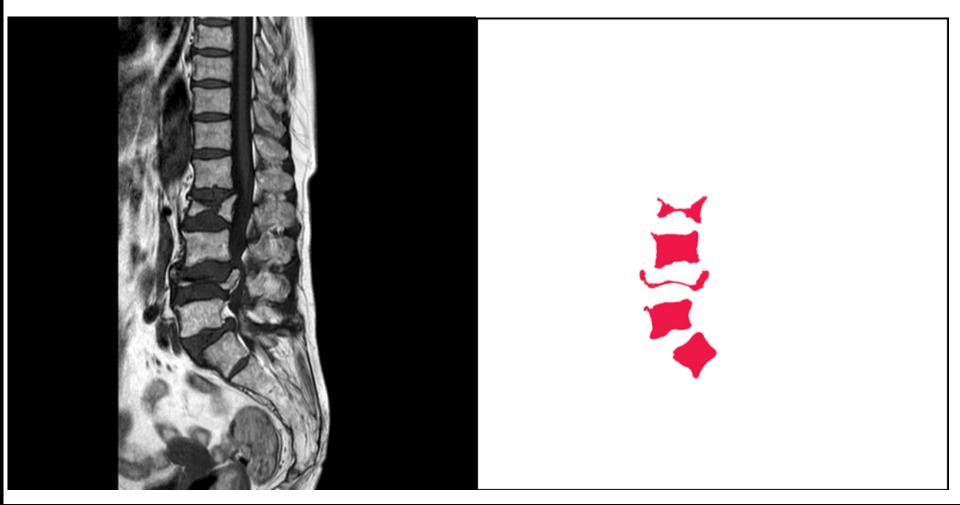
Benign VCFs


Malignant VCFs

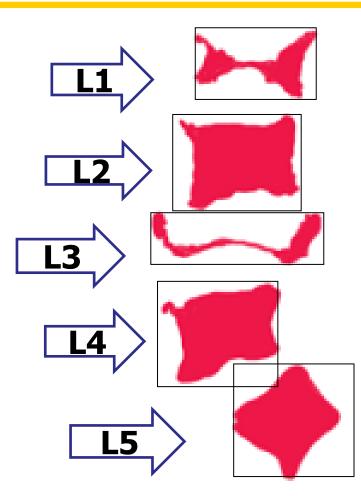
Manual segmentation

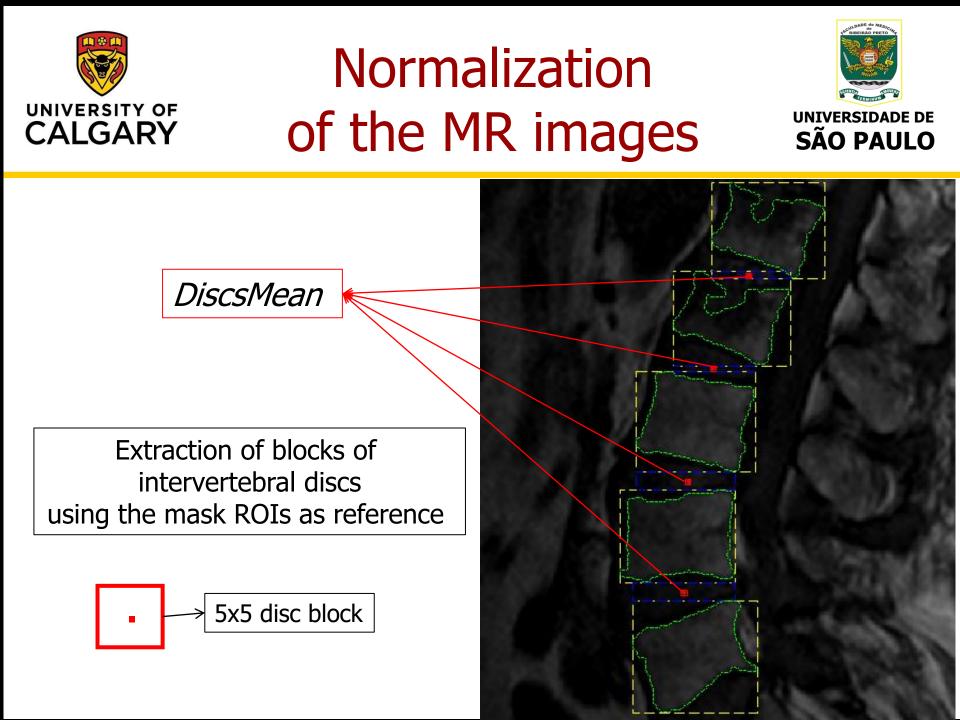


Software flow chart

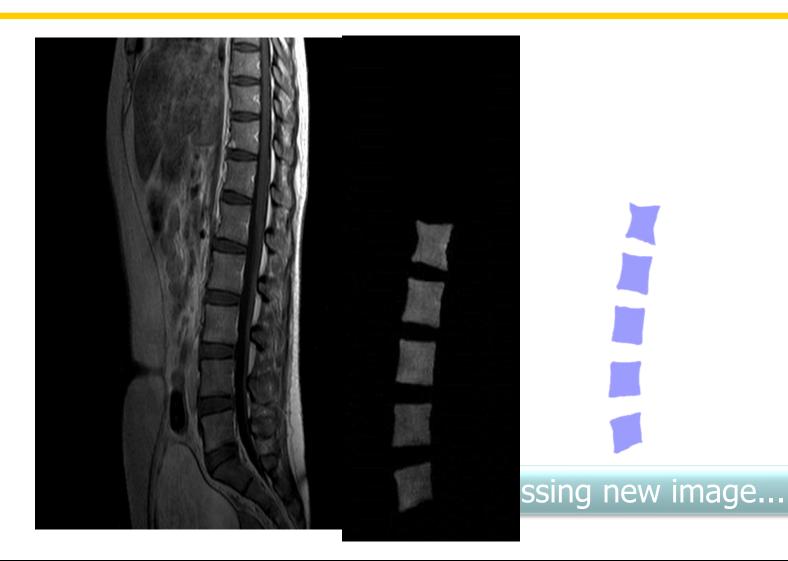


MRI exam and its mask



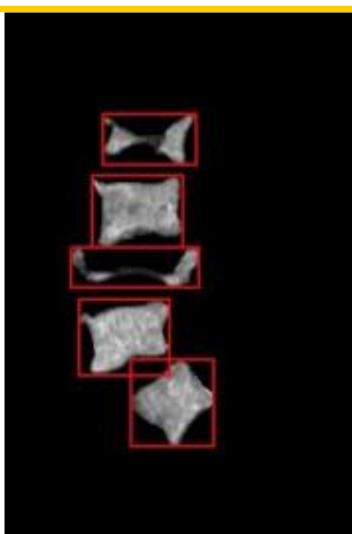


Detection of the coordinates of the vertebral bodies

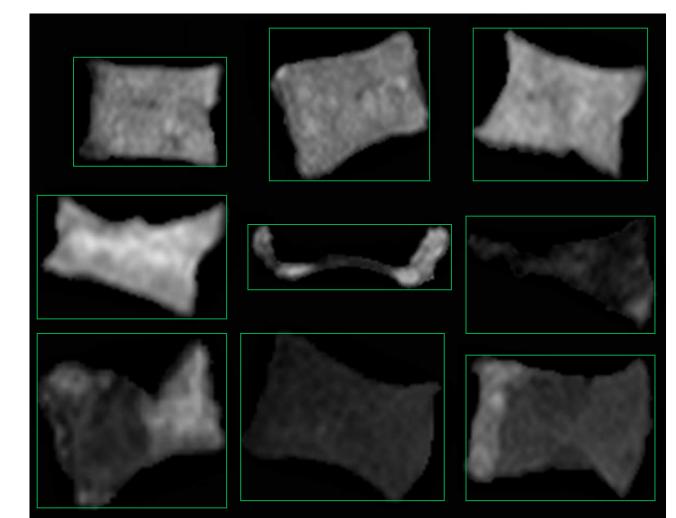

$newImg(i,j) = \frac{imgOriginal(i,j)}{discsMean}$

 $imgNorm(i,j) = 255 \times \frac{newImg(i,j) - \min(newImg)}{\max(newImg) - \min(newImg)}$

MRI exam ∩ Mask



Detection of the ROIs

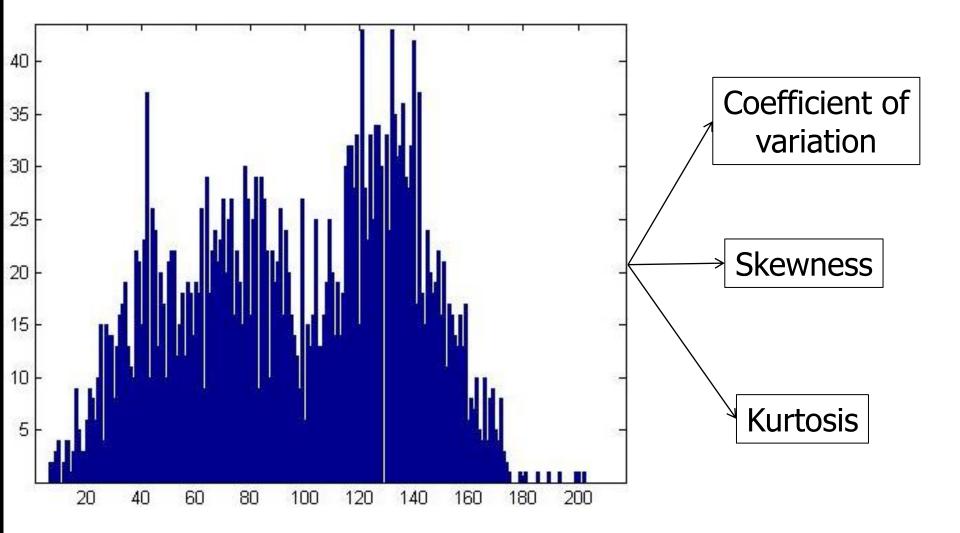

ROIs of the vertebral bodies

Normal

Benign VCFs

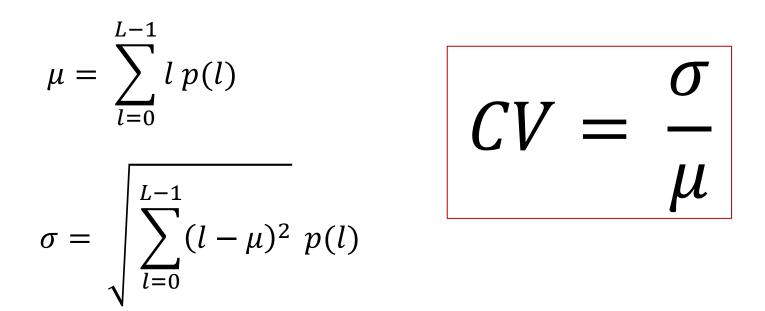
Malignant VCFs

Computation of the features


3 Statistical gray-level features

- 14 Texture features
- 10 Shape features

27 Features

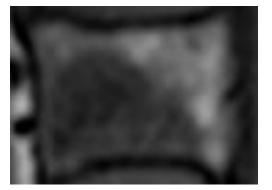


♦ Coefficient of variation (CV)

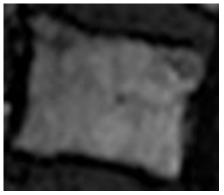
l = gray level, [0, L-1]p(l) = probability of occurrence of gray level l

Skewness

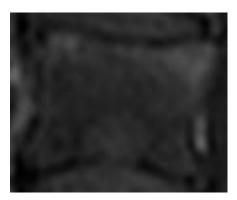
skewness =
$$\frac{1}{\sigma^3} \sum_{l=0}^{L-1} (l-\mu)^3 p(l)$$

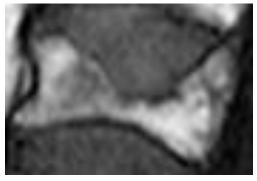

Kurtosis

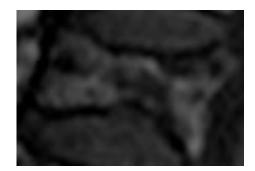
$kurtosis = \frac{1}{\sigma^4} \sum_{l=0}^{L-1} (l-\mu)^4 p(l)$



Differences in texture between normal and VCFs



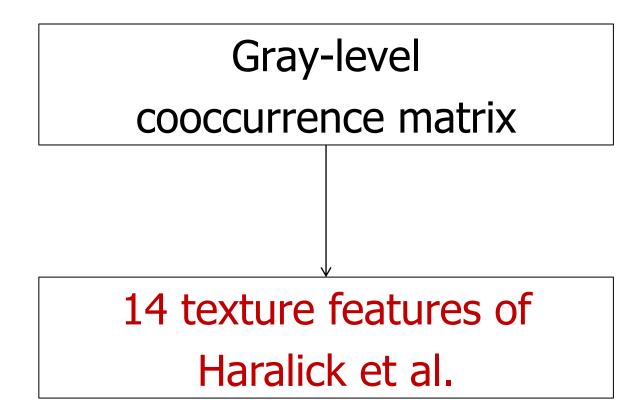

Malignant VCF


Normal

Malignant VCF

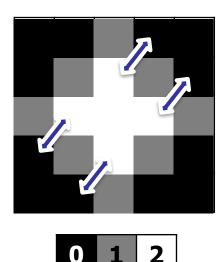
Benign VCF

Malignant VCF



Malignant VCF

Texture features



Ex: Image 5x5 pixels, 3 gray levels

Cooccurrence matrix p(i,j) for i = 0, j = 2

Distance = 1 pixel 0 1 2
0 2 2 4
1 2 4 2
Angle =
$$\pm 45^{\circ}$$
 2 4 2

Number of pixels of intensity 0 that are at ±45 degrees and distance 1 of pixels of intensity 2

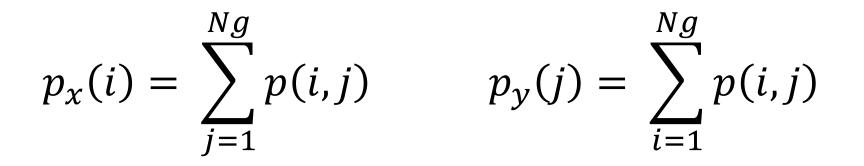
Angular second moment (Energy)

$$f_1 = \sum_i \sum_j \{p(i,j)\}^2$$

Contrast

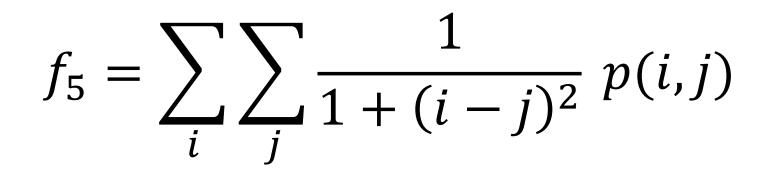
$$f_2 = \sum_{n=0}^{Ng-1} n^2 \left\{ \sum_{i=1}^{Ng} \sum_{j=1}^{Ng} p(i,j) \right\}; n = |i-j|$$

Ng: number of gray levels in the quantized image p(i,j): normalized to probability density function


Correlation

$$f_3 = \frac{\sum_i \sum_j (ij) p(i,j) - \mu_x \mu_y}{\sigma_x \sigma_y}$$

• μ_x , μ_y means • σ_x , σ_y standard deviations


Sum of squares: Variance

$$f_4 = \sum_i \sum_j (i - \mu)^2 p(i, j)$$

Inverse difference moment

Sum average

$$f_6 = \sum_{i=2}^{2Ng} i \ p_{x+y}(i)$$

Sum variance

$$f_7 = \sum_{i=2}^{2Ng} (i - f_6)^2 p_{x+y}(i)$$

$$p_{x+y}(k) = \sum_{\substack{i=1 \ k=i+j}}^{Ng} \sum_{\substack{j=1 \ k=i+j}}^{Ng} p(i,j)$$

k = 2, 3, ..., 2Ng

Sum entropy

$$f_8 = -\sum_{i=2}^{2Ng} p_{x+y}(i) \log\{p_{x+y}(i)\}$$

$$f_9 = -\sum_i \sum_j p(i,j) \log\{p(i,j)\}$$

Difference variance

$$f_{10}$$
 = variance of p_{x-y}

Difference entropy

$$f_{11} = -\sum_{i=0}^{Ng-1} p_{x-y}(i) \log\{p_{x-y}(i)\}$$

$$p_{x-y}(k) = \sum_{\substack{i=1 \ k=|i-j|}}^{Ng} \sum_{j=1}^{Ng} p(i,j)$$

k = 0, 1, ..., Ng - 1

Information measures of correlation 1

$$f_{12} = \frac{HXY - HXY1}{\max\{HX, HY\}}$$

Information measures of correlation 2

$$f_{13} = \{ 1 - \exp[-2(HXY2 - HXY)] \}^{1/2}$$

$$HXY = -\sum_{i}\sum_{j}p(i,j)\log\{p(i,j)\}$$

HX and *HY* are entropy of p_x and p_y

$$HXY1 = -\sum_{i}\sum_{j} p(i,j) \log \left\{ p_x(i) p_y(j) \right\}$$

$$HXY2 = -\sum_{i} \sum_{j} p_{x}(i) p_{y}(j) \log \{ p_{x}(i) p_{y}(j) \}$$

Maximal correlation coefficient

 $f_{14} = (\text{second largest eigenvalue of } Q)^{1/2}$

where
$$Q(i,j) = \sum_{k} \frac{p(i,k) p(j,k)}{p_{x}(i) p_{y}(k)}$$

\diamond Compactness C_o $C_o = 1 - \frac{4\pi A}{P^2}$ Perimeter P Vertebral area A

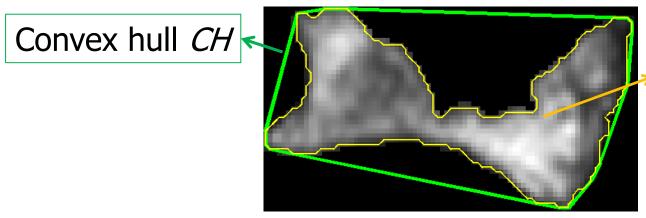
Fourier-descriptor-based feature FDF

$$Z(k) = \frac{1}{N} \sum_{n=0}^{N-1} z(n) \exp\left[-j\frac{2\pi}{N}nk\right]$$

k = -N/2+1, ..., -1, 0, 1, 2, ..., N/2z(n) = x(n) + j y(n)n = 0, 1, ..., N-1

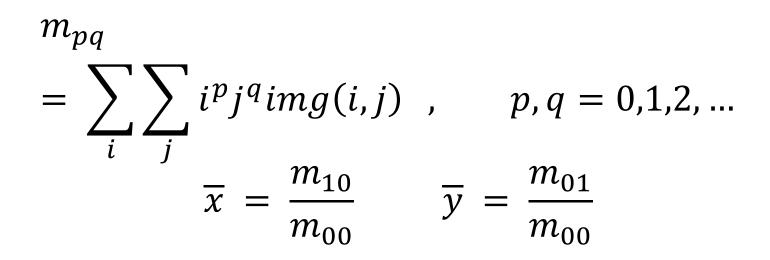
Fourier-descriptor-based feature FDF

$$FDF = \frac{\sum_{k=k1}^{N/2} |Z(k)|^2 + \sum_{-N/2+1}^{k=-k1} |Z(k)|^2}{\sum_{k=-N/2+1}^{N/2} |Z(k)|^2}$$



Convex deficiency CD

$$CD = \frac{CH - VA}{VA}$$



Moments:

Central Moments:

$$\mu_{00} = m_{00} = \mu$$
$$\mu_{10} = \mu_{01} = 0$$
$$\mu_{20} = m_{20} - \mu \overline{x}^2$$
$$\mu_{11} = m_{11} - \mu \overline{x} \overline{y}$$
$$\mu_{02} = m_{02} - \mu \overline{y}^2$$

$$\mu_{30} = m_{30} - 3m_{20}\overline{x} + 2\mu\overline{x}^{3}$$
$$\mu_{21} = m_{21} - m_{20}\overline{y} - 2m_{11}\overline{x} + 2\mu\overline{x}^{2}\overline{y}$$
$$\mu_{12} = m_{12} - m_{02}\overline{x} - 2m_{11}\overline{y} + 2\mu\overline{x}\overline{y}^{2}$$
$$\mu_{03} = m_{03} - 3m_{02}\overline{y} + 2\mu\overline{y}^{3}$$

Seven invariant moments (Hu):

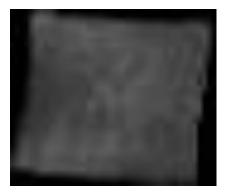
$$M_1 = \mu_{20} + \mu_{02}$$

$$M_2 = (\mu_{20} - \mu_{02})^2 + 4\mu_{11}^2$$

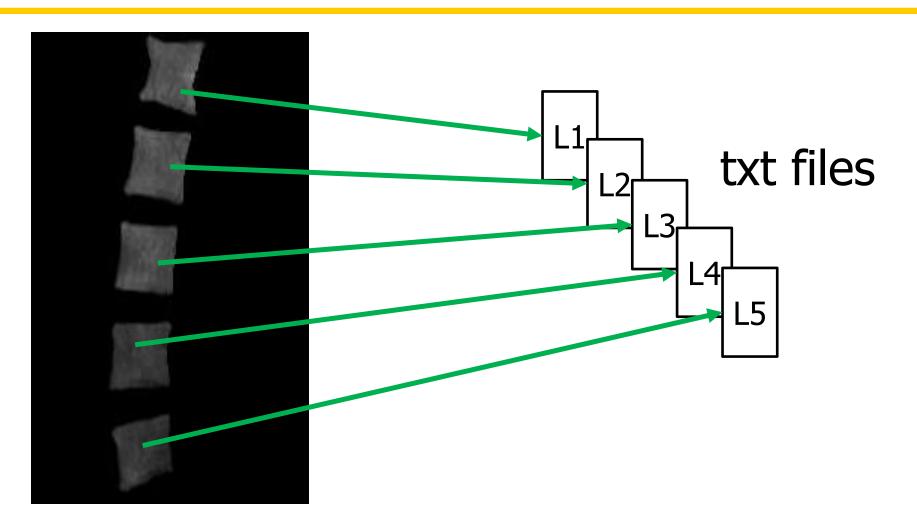
$$M_3 = (\mu_{30} - 3\mu_{12})^2 + (3\mu_{21} - \mu_{03})^2$$
$$M_4 = (\mu_{30} + \mu_{12})^2 + (\mu_{21} + \mu_{03})^2$$

$$M_{5} = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^{2} - 3(\mu_{21} + \mu_{03})^{2}] + (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^{2} - (\mu_{21} + \mu_{03})^{2}]$$

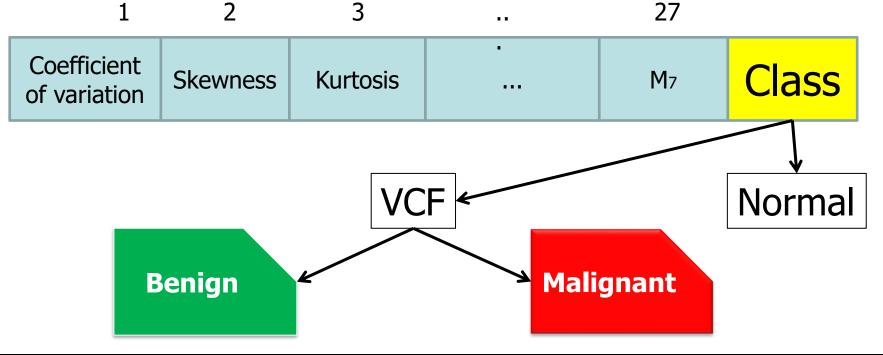
$$M_{6} = (\mu_{20} - \mu_{02})[(\mu_{30} + \mu_{12})^{2} - (\mu_{21} + \mu_{03})^{2}] + 4\mu_{11}(\mu_{30} + \mu_{12})(\mu_{21} + \mu_{03})$$


$$M_{7} = (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})[(\mu_{30} + \mu_{12})^{2} - 3(\mu_{21} + \mu_{03})^{2}] - (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})[3(\mu_{30} + \mu_{12})^{2} - (\mu_{21} + \mu_{03})^{2}]$$

Organization of the feature vector


1	2	3	 27
Coefficient of variation	Skewness	Kurtosis	 M 7

Files of features



- Manual addition of the class
- Classification according to radiologist and biopsy

Feature selection

- Software WEKA
- Wrapper method for feature selection
 - ≻ kNN with k = 1, 3, ..., 13
 - > Naïve Bayes
 - RBF network
- Best first as search method
 Greedy search for the best subset of features

- Software WEKA
- Classifiers:
 - ▶ k-nearest neighbor: k = 1, 3, 5, 7, 9, 11, 13
 - > Naïve Bayes
 - > RBF network
- Stratified 10-fold cross-validation
 9 folds for training, 1 fold for test

Clinical Classes

VCF vs Normal

Benign VCF vs Malignant VCF

Malignant VCF, Benign VCF, and Normal

- Confusion Matrix
 - Sensitivity
 - Specificity
 - > AUROC
 - % of correct classification

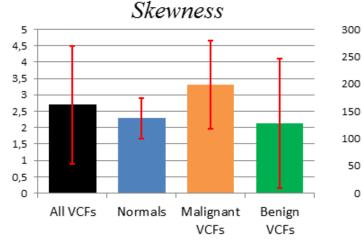
- p-values obtained using Wilcoxon rank-sum test
- NS indicates no significant difference
- \clubsuit NA indicates that A_z could not be obtained
- ♦ * for 0.01 ≤ p < 0.05</p>
- ★ ** for 0.001 ≤ p < 0.01</p>

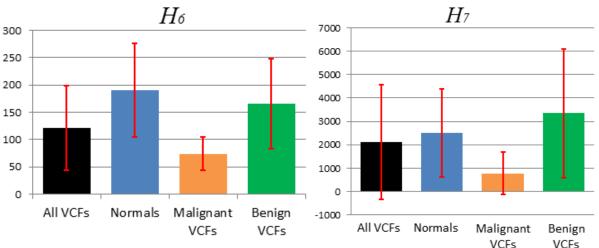
A_z and p-values

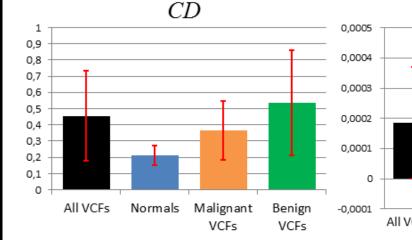
	Benign VCF versus Malignant VCF		All VCFs together versus Normal	
Feature	Significance	A_z	Significance	A_z
CV	NS	0.580	***	0.751
Skew	***	0.861	*	0.549
Kurt	***	0.824	NS	0.532
H ₁	***	0.849	NS	0.625
H ₂	***	0.866	*	0.661
H ₃	NS	0.480	NS	0.629
H_4	***	0.874	NS	0.642
H_5	***	0.844	*	0.577
H ₆	***	0.829	***	0.731
H ₇	***	0.871	NS	0.640
H ₈	***	0.854	**	0.620
H ₉	***	0.858	***	0.647
<i>H</i> ₁₀	***	0.871	**	0.674

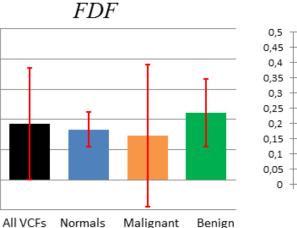
A_z and p-values

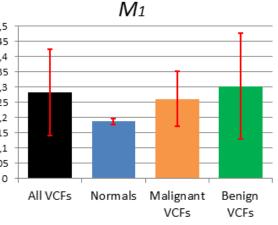
	Benign VCF versus Malignant VCF		All VCFs together versus Normal	
Feature	Significance	Az	Significance	Az
H ₁₁	***	0.868	**	0.632
H ₁₂	***	0.731	NS	0.524
H ₁₃	***	0.854	***	0.614
H ₁₄	NS	0.566	NS	0.462
Co	***	0.722	***	0.864
FDF	***	0.837	NS	0.449
CD	***	0.700	***	0.881
M ₁	NS	0.567	***	0.964
M ₂	NS	0.518	***	0.932
M ₃	**	0.655	*	0.887
M ₄	*	0.617	NS	0.936
M ₅	NS	0.389	NS	NA
M ₆	NS	0.480	NS	0.498
M ₇	NS	0.538	NS	NA




- Benign VCFs versus Malignant VCFs
 - High statistical significance and A_z for texture and gray-level features
 - FDF is also highly significant
- All VCFs versus Normal vertebral bodies
 - Poor performance of texture and gray-level features
 - More of the shape features showed high significance and A_z




Mean and standard deviation of features



VCFs

VCFs

Mean and standard deviation of features

- Mean skewness of malignant VCFs is higher than that for benign VCFs
 - T1 signals are distributed more on the lower side of the histogram for malignant VCFs
- *H*₆ and *H*₇ show large differences in their mean values for malignant VCFs versus benign VCFs

Mean and standard deviation of features

- CD and M₁ show large differences in their mean values for classification of all VCFs together against normal vertebral bodies
- *FDF* values are, on the average, higher for benign
 VCFs than for normal vertebrae
- *FDF* values are lower for malignant VCFs than for normal vertebral bodies

FDF is significant for benign vs malignant VCFs

FDF was selected for all cassifiers of this purpose

FDF is not significant for all VCFs vs normal vertebral bodies

*M*₁ is significant for all VCFs vs normal vertebral bodies

> *M*₁ was selected for all classifiers of this purpose

- k-NN did not select the gray-level features for benign vs malignant VCFs
 - > *FDF*, M_5 , H_{10} , and H_{13} were selected at least three times
- CV is statistically significant for all VCFs vs normal vertebral bodies and was selected for all classifiers

Feature selection

 Various texture features were selected for both types of classification

Naïve Bayes selected the highest number of features for both types of classification

Classification

Benign vs malignant VCFs

Classifier		ACC rate %	AUROC	
k-NN	k = 7	82.4	0.84	
	k = 9	81.4	0.90	
	k = 11	84.3	0.90	
	k = 13	84.3	0.90	
Naïve Bayes		85.3	0.92	
RBF network		78.4	0.86	

All VCFs vs normal vertebral bodies

Classifier		ACC rate %	AUROC	
k-NN	k = 7	90.1	0.95	
	k = 9	89.0	0.92	
	k = 11	89.0	0.92	
	k = 13	89.5	0.94	
Naïve Bayes		90.6	0.97	
RBF network		91.1	0.94	

 RBF network classifier for benign vs malignant VCFs

- ACC rate was the lowest obtained
- > AUROC is only better than that of 7-NN
- RBF network classifier for all VCFs vs normal vertebral bodies
 - > ACC rate is the highest obtained

AUROC for classification of all VCFs together vs normal vertebral bodies is at least 0.92

- AUROC of the naïve Bayes classifier is 0.97 for this purpose
 - Better than the previous study using only shape features in which AUROC was 0.945
- This shows the importance of texture and gray-level features for this purpose

 AUROC for classification of benign vs malignant VCFs is 0.92 for naïve Bayes

- Better than the previous study in which the highest AUROC was 0.91 for 3-NN
- In a previous study using only shape features the highest AUROC was 0.78
 - This shows the importance of texture and graylevel features for this purpose

Benign VCFs, malignant VCFs, and normal vertebral bodies

Р	True classification		
Malignant VCFs	Benign VCFs	Normal vertebral bodies	
39	5	5	Malignant VCFs
13	35	5	Benign VCFs
4	1	84	Normal vertebral bodies

- Features selected:
 - CV, Skew, H₂, H₃, H₅, H₆, H₈, H₉, H₁₁, H₁₂, H₁₃, H₁₄, C₀, FDF, CD, M₁, M₃, and M₇
- Weighted average AUROC of 0.94
- ACC rate of 82.7%

Limitations of the study

 Manual segmentation of the vertebral bodies
 Automatic segmentation methods could lead to the realization of a clinically useful CAD system

 Individual and separate analysis of the vertebral bodies ignores important information outside their regions

Limitations of the study

The use of only the median sagittal slice

Some lateral VCFs may be misclassified

 Extension of segmentation and feature extraction methods to 3D is desirable

Limitations of the study

Analysis of only T1-weighted MRI

Benign VCFs

- isointense vertebra in T2-weighted and T1-weighted MRI after gadolinium contrast
- Malignant VCFs
 - heterogeneous or high signal in T2-weighted and in T1-weighted MRI after gadolinium contrast

 Most of the features presented are important for both types of VCF classification

For benign vs malignant VCFs

Az values of texture and gray-level features are higher than those shape features

For all VCFs vs normal vertebral bodies

Az values of shape features are higher than those of texture and gray-level features

The features FDF and CV follow the opposite trend

The naïve Bayes method was the best classifier in both types of classification

 The proposed methods are promising for CAD of VCFs

- Future works:
 - Evaluate our methods with the inclusion of an automatic segmentation method
 - Extend the methods to 3D analysis of vertebral bodies

Acknowledgment

São Paulo Research Foundation (FAPESP)
 > 2014/12135-0 and 2015/08778-6

- National Council of Technological and Scientific Development (CNPq)
- Natural Sciences and Engineering Research Council of Canada
- Ph.D students
 - > Rafael de Menezes-Reis
 - Faraz Oloumi

Feature selection: benign vs malignant VCFs

Feature	k-NN				Naïve	RBF
	k = 7 k	k = 9 k	= 11	k = 13	Bayes	Network
CV						
Skew					Х	Х
Kurt						
H ₁						
H_2	Х	Х				Х
H ₃	Х	X			Х	X
H_4						
H ₅						
H ₆	Х				Х	Х
H ₇						
H ₈						
H ₉						
<i>H</i> ₁₀		X	X	Х		
H ₁₁					Х	
H ₁₂					Х	
H ₁₃	Х	X	X	Х	Х	
H ₁₄					Х	Х
Co					Х	Х
FDF	Х	Х	Х	Х	Х	Х
CD					Х	
M ₁					Х	
<i>M</i> ₂						
M ₃						

Feature selection: all VCFs vs normal vertebral bodies

Feature		k	Naïve	RBF		
	k = 7	k = 9	k = 11	k = 13	Bayes	Network
CV	Х	Х	Х	Х	Х	Х
Skew					Х	
Kurt						
H_1						
H_2					Х	
H ₃					х	
H_4					х	Х
H ₅					х	
H ₆					х	
H ₇						
H ₈					х	
H ₉					Х	
<i>H</i> ₁₀					Х	
H ₁₁		Х	Х		Х	Х
<i>H</i> ₁₂						
H ₁₃						
<i>H</i> ₁₄						
Co						
FDF						
CD						Х
<i>M</i> ₁	Х	Х	х	х	х	Х
<i>M</i> ₂		Х	х	х		
M ₃		Х	Х		Х	Х

