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Introduction

Identification and segmentation of the 
thoracic, abdominal, and pelvic organs are 
important steps in

computer-aided diagnosis, 
treatment planning, 
landmarking, and
content-based retrieval of biomedical images.
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Computer-aided Diagnosis (CAD)

Manual segmentation and analysis of an organ 
or region of interest can provide accurate 
assessment, but are:

tedious, 
time-consuming, and 
subject to intra- and inter-operator error.
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Computer-aided Diagnosis (CAD)

Computer-aided analysis of medical images 
could facilitate quantitative and objective 
analysis.    

Physicians could use the results of computer 
analysis as a “second opinion” to make the 
final decision.
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Segmentation of Medical Images

For improved localization, segmentation, and 
analysis of various organs, the following 
approaches could be used:

prior knowledge (knowledge-based), 
anatomical atlases (atlas-based), 
anatomical landmarks (landmark-based), and
relative coordinate systems (landmark-based).
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Landmarking of Medical Images

• Landmarks are used as references to represent 
the spatial relationship between different regions, 
organs, and structures in medical images.

• Landmarks are selected such that they:

are easy to detect,
have stable locations, and
have characteristics that do not vary to a large  
extent in the presence of abnormalities.
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Tissue Characterization in 
Computed Tomographic (CT) Images

• As an X-ray beam traverses the body, it is 
attenuated according to Lambert-Beer law:

It: transmitted intensity of the X ray,
I0: incident intensity,
l : length of the path of the beam, and
µ: linear attenuation coefficient.

)exp(0 lIIt µ−=
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Hounsfield Units (HU)

• To represent       in a more convenient manner 
and to make it effectively independent of the     
X-ray energy:

: linear attenuation coefficient of water
k : scaling constant

• If k = 1000: Hounsfield units (HU).
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CT Values of Abdominal Tissues
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Segmentation of CT Images: 
Motivation

• Most of the published procedures are only applicable to  
CT scans of adults. 

• In pediatric cases, organs and tissues are not well      
developed, and possess different density or HU values  
than those for adults.

• This work is on segmentation and analysis of CT images     
of pediatric patients with tumors due to neuroblastoma in 
thoracic, abdominal, and pelvic regions.
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Proposed Study

Automatic segmentation of 

the rib structure, 
the vertebral column, 
the spinal canal,
the diaphragm, and
the pelvic girdle.

Use of these landmarks in the segmentation 
of abdominal tumors (neuroblastoma).
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Image Processing: Segmentation

• Process of partitioning an image into regions 
representing the different objects in the image.

• Based on one of the two basic properties:
discontinuity and
similarity.
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Histogram

• The histogram of a digital image f (x, y) of size M × N with    
L gray levels is defined as:  

where the delta function is defined as

• The sum of all the entries in the histogram is equal to the
total number of pixels (or voxels) in the image.
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Histogram

If the image has large number of pixels (or voxels), the 
histogram will approximate the probability density function 
(PDF) of the gray levels in the image.
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Thresholding

• Gray level thresholding segments an image based on the 
value at each point (x, y) or pixel relative to a specified 
threshold value, T.

• Thresholding can be local or global.

• In the simplest case, known as binarization, a single 
threshold is specified

where           ; G is the set of available values for gray levels. 
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Thresholding

• The use of multiple thresholds to perform segmentation is 
known as multi-thresholding.

• A set of thresholds, , is defined such that all   
elements in the image satisfying ,
constitute the ith segmented region.

• In order to be effective good separation between the values of 
objects of interest and the background is required.
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Thresholding

Original image Thresholding at
T = 200 HU

Multi-thresholding at
T0 = 0 HU, T1 = 200 HU
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Region-based Methods

If R represents the entire image region and segmentation 
results in n subregions, R1, R2, ..., Rn, the results should satisfy

1.       Ri=1 Ri = R,
2. Ri is a connected region, i = 1, 2, ..., n,
3. Ri Rj = ∅ for all i ≠ j,
4. P (Ri) = TRUE for all i = 1, 2, ..., n,
5. P (Ri Rj) = FALSE for all i ≠ j,

where P (Ri) is a logical predicate defined over the points or 
pixels in the set Ri, and ∅ is the null set.
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Region Growing

• Region-based methods can be divided into two groups: 
region growing, and region splitting and merging.

• Region growing groups pixels or subregions into larger 
regions based on predefined criteria and connectivity.

• The result depends on:

selection of seed pixel or pixels,
specification of inclusion or similarity criteria, and
formulation of stopping rule. 
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Region Splitting and Merging

• Splitting is used to subdivide the entire region successively  
into smaller and smaller disjoint regions until the  
homogeneity criterion is satisfied by each region.

• Region splitting could result in adjacent regions with  
identical or similar properties.

• Merging allows neighboring homogeneous subregions to 
be combined into larger regions.
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Edge-based Techniques

• An edge is the oriented boundary between two regions 
with relatively distinct gray-level properties.

• Most edge detection techniques require the computation 
of a local derivative or difference.

• The gradient of an image f (x, y) at the location (x, y) is 
defined as the vector
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Gradient

• The magnitude of the gradient vector is given by

• The direction (angle) of the gradient vector is given by

where the angle is measured with respect to the x axis.
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Edge Detection in Digital Images

• In digital images, the magnitude of the gradient is 
approximated by first difference operations:
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Edge Detection in Digital Images
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• Among the difference-based edge detection operators, 
the Prewitt and Sobel operators are simple and popular.
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Edge Detection in Digital Images

• The Laplacian is a second-order difference operator, 
widely used for omnidirectional edge detection.

• The Laplacian produces double-edged outputs, and is 
sensitive to noise.

• The  Laplacian-of-Gaussian (LoG) is the combination of 
the Laplacian and the Gaussian, and can be used for 
robust omnidirectional edge detection.

   
0  1    0
1  41
0  1   0

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−



26

Canny’s Method for Edge Detection 

• Optimal edge detection technique.

• Based upon three criteria for good edge detection:

multi-directional derivatives, 
multi-scale analysis, and
optimization procedures.

• Selectively evaluates directional derivatives at each edge.
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Canny’s Method for Edge Detection 
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Image Segmentation Using
Deformable Contours (Snakes)

• Contour in image domain that deforms according to internal 
and external forces.

• Internal forces are defined within the contour itself to 
maintain the contour smooth.

• External forces are computed from the image data to move 
the contour toward an object boundary.

• When the external and the internal forces become equal, 
the force field attains equilibrium and the contour stabilizes.
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Deformable Contours

• Modeled as a closed curve:

• The contour is like an elastic string subjected to a 
set of dynamic forces:
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Deformable Contours

• The Internal force is given by:

• The 1st order derivative discourages stretching, and 
makes the model behave like an elastic string.

• The 2nd order derivative discourages bending, and makes 
the model behave like a rigid rod.
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Deformable Contours

• The damping (viscous) force is given by:

• A viscous force is introduced to stabilize the deformable 
contour around the static equilibrium configuration.

• The mass of the contour is often assumed to be zero: 
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Deformable Contours

• The external force can be composed of either potential  
forces or non-potential forces.

• Traditional definition of external force for image I(x,y):

• If the contour is not initialized close to the object’s  
boundary, the external force will have a low intensity and 
will not result in proper convergence.

• To address this problem Gradient Vector Flow (GVF) field 
could be used as an external force.

2),()( yxIext ∇−∇=CF
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Gradient Vector Flow (GVF)

• Based on a vector diffusion equation that diffuses the gradient 
of an edge map in regions distant from the boundary. 

• GVF field is defined as the solution to

where ,      is a regularization parameter.
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Gradient Vector Flow (GVF)

The spatial extent of the external forces may be enhanced 
with the mapping function:

where , the GVF field component; 

determines the rate of convergence      
determines the asymptote of convergence
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Image Segmentation Using
Deformable Contours (Snakes)

automatic initialization contour of the diaphragm

0.1,1.010,10,30 21 ===== KK,.λ     βα



36

The Hough Transform

• Useful tool to detect any shape that can be represented 
by a parametric equation (straight line, circle, ellipse).

• Uses the information related to the edges in the form of a 
binary image. 

• Has the ability to recognize shapes and object boundaries, 
even with sparse edge map.
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The Hough Transform

Detection of straight lines:

• A straight line can be represented by the angle θ of its 
normal and its distance ρ from the origin by the equation

• In the Hough space or parameter space (ρ, θ), any straight 
line in the image domain is represented by a single point.

• The sinusoidal curves in the parameter space of all points 
that lie on the line  intersect at (ρ0, θ0).

θθρ sincos yx +=

000 sincos θθρ yx +=
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The Hough Transform

Detection of straight lines:

• θ is restricted to [0º, 180º] or [0º, 360º].

• ρ is restricted by the size of the image.

• The origin may be chosen at the center of the image or any 
arbitrary point.

• The value of ρ can be considered to be negative for 
normals to lines extending below the horizontal axis, x=0, in 
the image, with the origin at the center of the image, and θ
in the range [0º, 180º]. 
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The Hough Transform

Detection of straight lines:

An image with two straight lines
(ρ, θ)=(-100, 30º) and (20, 60º).
Limits of x and y axis are ±100;
the origin is at the center of the image. 
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-150

ρ

θ 180º0º
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The Hough Transform

Detection of circles:

• All points along the circumference of a circle of radius c
centered at (x, y) = (a, b) satisfy the relationship

• A circle is represented by a single point in the 3D parameter 
space (a, b, c).

• The points along the circumference or the edge of a circle 
in the (x, y) plane describe a right circular cone in the Hough 
parameter space, which is limited by the image size.

222 )()( cbyax =−+−
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The Hough Transform
Detection of circles:

100×100 image, with a 
circle of radius c = 25
pixels, centered at
(x, y) = (50, 50). 
(x, y) = (1, 1) is at the 
top left corner.

c = 20 pixels c = 24 pixels c = 25 pixels

c = 26 pixels c = 30 pixels
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The Convex Hull

• The convex hull H of a set of points S is the 
smallest convex set that contains all the points.

• A set A is said to be convex if the straight-line 
segment joining any two points in A lies entirely 
within A.

• The set difference H - S is called the convex 
deficiency of S.
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The Convex Hull

Convex hull Gray: actual region
White: convex deficiency
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Fuzzy Sets

A fuzzy set A in a reference set X can be characterized 
by a membership function, mA, that maps all elements in X 
into the interval [0, 1]. 

The fuzzy set may be represented as a set of fuzzy pairings

A = {(x, mA(x)) | x є X}

mA(x) = x → [0, 1], for x є X

The membership value mA(x) denotes the degree to which 
an element x satisfies the properties of the set A. 
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Fuzzy Sets

Given two fuzzy sets A and B with the membership 
functions mA(x) and mB(x), the standard set-theoretic 
relations and operations are defined as:

Equality (=): A = B mA = mB

Containment (    ): A     B mA ≤ mB

Complement (~): mÃ (x) = 1- mA (x)

Intersection (∩): mA∩B (x) = min {mA (x), mB (x)}

Union (U): mAUB (x) = max {mA (x), mB (x)}

⊂⊂
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Fuzzy Mapping

• The value mA (r) is called the grade of membership of r
in A: this function indicates the degree to which r satisfies 
the membership criteria defining A.

• Consider the set of numbers that are “close to 10”.         
In defining mA (r), three properties should be satisfied:

1. Normality: mA (10) = 1.

2. Monotonicity: the closer the value of r is to 10, the   
closer mA should be to 1.

3. Symmetry: numbers equally far from 10, such as     
9 and 11, should have equal membership.
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Fuzzy Mapping

The unnormalized Gaussian 
function, defined as

satisfies all the properties.

The parameters      and      
characterize the set A.
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Fuzzy Mapping

Original image µ = 412 HU, σ = 156 HU

µ = -528 HU, σ = 121 HU µ = 18 HU, σ = 14 HU
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Fuzzy Connectivity: Affinity

• Object definition is based on local affinity between voxels 
as proposed by Udupa and Samarasekera.

• The closer the voxels and the more similar their values, the 
greater the affinity
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Fuzzy Connectivity: Connectedness

• Connectedness is based on the affinity function.

• The connectedness is dependent on all possible 
connecting paths between two voxels. 

• A connecting path is formed from a sequence of links 
between successive adjacent voxels in the path.

• The strength of each link is the affinity between the two 
adjacent voxels in the link.

• The strength of a path is the strength of its weakest link. 
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Fuzzy Connectivity: Connectedness

• The strength of connectedness between two voxels is the 
strength of the strongest path.

• The points belonging to the same object should possess a 
high degree of connectedness due to 

the strong resemblance based on the fuzzy  
membership, and 

the existence of strong paths connecting them.
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Fuzzy Connectivity: Connectedness

• Background or undesired elements should possess a        
low degree of connectedness with the object.

• Paths could exist between the desired and undesired 
elements: they would possess low membership values.
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Fuzzy Connectivity: Algorithm

• Initialize algorithm with seed voxel; assign the maximum 
membership of unity. 

• Grow region by evaluating the connectivity between the 
seed voxel and all connected voxels in the volume.

• Produce membership volume. 

• Threshold membership volume to obtain hard binary 
segmentation.
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Morphological Image Processing

• A branch of nonlinear image processing that concentrates 
on the analysis of geometrical structures in an image.

• Based on conventional set theory.

• Probe the image with the structuring element and quantify 
the manner in which the structuring element fits, or does
not fit, within the image.

• The most elementary set operations relating to 
mathematical morphology should be increasing and 
translation invariant.
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Binary Morphological 
Image Processing

• Fundamental binary operations are based on 
Minkowski algebra.

• Fundamental operations are:

erosion, and
dilation.

• Secondary operations are:

opening (erosion + dilation), and
closing (dilation + erosion).
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Erosion

• Translation invariant, known as Minkowski subtraction.

• If the origin lies within the structuring element, the effect   
is shrinking; the result is a subset of the original image. 

• Protrusions smaller than the structuring element are 
eliminated.

• In digital implementation, if any of the pixels within the 
neighborhood defined by the structuring element is ‘off’
(i.e., set to 0), the output pixel is also set to 0.
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Erosion

B B
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Dilation

• Translation invariant, known as Minkowski addition.

• If the origin lies within the structuring element, it fills in small 
holes (relative to the structuring element) and intrusions. 

• Represents filtering on the outside, and has the effect of 
expansion.

• In digital implementation, if any of the pixels within the 
neighborhood defined by the structuring element is ‘on’
(i.e., set to 1), the output pixel is also set to 1.
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Dilation

BB
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Opening

• Has the property of idempotency.

• Obtained by applying erosion followed by dilation.

• If the origin lies within the structuring element:

removes objects smaller than the structuring element,
smoothens the edges of the remaining objects, and
disconnects objects that are connected by branches 
smaller than the structuring element.
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Opening

B B
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Closing

• Has the property of idempotency.

• Obtained by applying dilation followed by erosion.

• If the origin lies within the structuring element:

fills in holes and intrusions smaller than the structuring 
element, and
connects objects that are disconnected by gaps smaller 
than the structuring element.
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Closing

B B



64

Binary Morphological Operations

Disk-type flat structuring 
element of radius 5 pixels

Original Eroded Dilated

Opened Closed
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Gray-scale Morphological 
Image Processing

• Extension of binary morphological image processing using
threshold decomposition: decomposing a gray-scale image 
into a series of “stacked” binary images.

• Gray-scale flat erosion: replaces the value of an image f at 
a pixel (x, y) by the infimum of the values of f over the 
structuring element B.

• Gray-scale flat dilation: replaces the value of an image f at 
a pixel (x, y) by the supremum of the values of f over the 
reflected structuring element ˘B.

• Gray-scale opening and closing obtained similarly. 
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Opening-by-reconstruction

• Morphological operator that analyzes the connectivity of 
objects in the image.

• Iterative procedure to extract regions of interest from the 
image using a ‘marker’.

• Computationally more efficient than fuzzy connectivity: 
useful for multi-seed approach.
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Opening-by-reconstruction

Starting with a mask, I, and marker, J, the gray-scale 

reconstruction, ρI, is defined as
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Opening-by-reconstruction

Marker, J, is dilated using a structuring element, B, such 
that result is constrained to the mask, I J ⊆ I.



69

Image Segmentation Using
Opening-by-reconstruction

• Image mapped to obtain fuzzy-membership values:

• Using this mapping, elementary dilations performed on 
the marker, restricted by the mask.

Mask

Marker
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Image Segmentation Using
Opening-by-reconstruction

• Mask = fuzzy-membership map (constraint)

• Marker = seed pixel or region (starting point)

• Dilate marker within the mask until no further 
change is found between two iterations.

seed pixel fuzzy-map 
(µ = 30 HU, σ =17 HU)

result
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Linear Least-squares (LLS) 
Estimation

• Extract N coordinates of the surface and place in a vector:

• Model the expected region as a quadratic surface:

• Calculate error between real data, z, and model, z’:
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Linear Least-squares (LLS) 
Estimation

• Estimate the best set of parameters

that minimizes the squared error rTr where
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CT Dataset

• Number of patients: 14

• Number of CT exams: 40

• Ages of the patients: 2 weeks to 20 years

• Intra-slice resolution: 0.35 mm to 0.70 mm

• Inter-slice resolution: 2.5 mm or 5 mm

• Number of exams including contrast: 36
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Quantitative Assessment

• Hausdorff distance: The directed Hausdorff distance 

from set A to set B is defined as 

A more general definition of the Hausdorff distance:
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Quantitative Assessment

• Mean Distance to the Closest Point (MDCP):

Given two sets and 

distance to the closest point (DCP) is defined as
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Quantitative Assessment

• Measures of volumetric accuracy:

where V () is the volume, A is the result of segmentation 
using the proposed procedures, and R is the result of 
segmentation by a radiologist (the ground truth).

Total error 

False-positive error rate

True-positive rate
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Preprocessing Steps

Grow air region; remove

Erode skin; remove

Grow peripheral muscle; remove

Original CT volume

Grow peripheral fat; remove

Preprocessed CT volume; peripheral 
artifacts and tissues removed
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Removal of Peripheral Artifacts
and the External Air Region

• By definition, air has CT number of –1000 HU.

• Each CT volume is thresholded with the range                
-1200 HU to -400 HU.

• 2D binary opening-by-reconstruction is applied on a 
slice-by-slice basis using the thresholded volume as 
mask and the four corners of each slice as markers.

• Morphologically closed using a disk type structuring 
element of radius 10 pixels (approximately 5 mm) to 
remove material external to the body. 
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Removal of the Skin Layer

• Skin is the first layer from the outside of the body, with 
usual thickness of 1 to 3 mm.

• The air region is morphologically dilated in 2D to include
the skin.

• The skin layer could be used as a landmark for 
registration and segmentation.
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Removal of the Peripheral Fat

• The peripheral fat is the next layer after the skin from the 
outside of the body; varies in thickness from 3 to 8 mm
in children.

• Fat has a mean CT value of µ = -90 HU with σ =18 HU.

• Voxels within a distance of 8 mm from the inner skin 
boundary are examined; if they fall within the range 
-90 ± 2 × 18 HU, they are classified as peripheral fat.
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Removal of the Peripheral Muscle

• Peripheral muscle has a mean CT value of µ = + 44 HU
with σ =14 HU; thickness varies from 6 to10 mm.

• Voxels found within 10 mm from the inner boundary of 
peripheral fat and within the range 44 ± 2 × 14 HU are 
classified as peripheral muscle.

• The peripheral fat region obtained is dilated using a disk-
shaped structuring element of radius 2 mm to remove 
discontinuities and holes between the peripheral fat and 
the peripheral muscle. 



Preprocessing Steps
Removal of  peripheral artifacts and tissues:

peripheral artifacts the skin layer

the peripheral fat region the peripheral muscle after processing

before processing
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Preprocessing Steps

Surface after removal of:
peripheral artifacts the skin layer the peripheral fat the peripheral muscle
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Segmentation of the Rib Structure

Initial segmentation performed using

thresholding at 200 HU, 
morphological erosion and closing, 
information related to the peripheral fat boundary,
several features of each thresholded region on each 
slice:

Euclidean distances, 
compactness ,
length and width of each region.
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Segmentation of the Rib Structure

Initial result of segmentation used as a marker to 
perform opening-by-reconstruction.
Refined using the features defined previously, defined 
central line, and an elliptical region obtained adaptively 
inside the ribs on each slice.
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Results: Rib Structure

Produced good results without 
including parts of tumors or other
organs.
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Segmentation of the 
Vertebral Column

Segmentation performed using: 

the information related to the ribs and the inner 
boundary of the peripheral fat region,  

thresholding at 180 HU, 

the gradient magnitude, and

morphological erosion, dilation, and closing.
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Segmentation of the Vertebral Column

A pre-processed 
CT slice

After thresholding and 
removing the ribs

Initial result of      
segmentation

Binarized gradient of 
the detected region

Region obtained applying 
the combined mask

Final result of 
segmentation
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Results: Vertebral Column

The results of segmentation compared to manual 
segmentation performed by a radiologist. 

--- contours
drawn by a
radiologist

--- contours
obtained by 
the proposed
methods
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Results: Vertebral Column

Quantitative assessment:

Number of CT exams: 13 (of 6 patients)

Number of selected slices: 458

Average MDCP: 0.73 mm

Average Hausdorff distance: 3.17 mm
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Segmentation of the Spinal Canal

CT volume after removing external air, peripheral artifacts, 
the skin, and the peripheral fat region

Remove peripheral muscle

Crop image volume containing the vertebral column

Compute edge map; apply the Hough transform 
to detect the best-fitting circle for each slice 

Detect seed voxels; calculate parameters for fuzzy region growing

Detect the vertebral column

Detect the rib structure

Grow fuzzy spinal region; threshold volume and close using
morphological operators and convex hull

Detected spinal canal region
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Spinal Canal: Detection of 
Seed Voxels

• The Hough transform was used to detect the best-fitting    
circle in the spinal canal.

• The radius of the circle was limited to 6 to 10 mm.

• The vertebral column and the rib structure were used to  
delimit the search range for seed voxels.

• The center of the detected best-fitting circle with HU  
values in the range 23 ± 2 × 15 considered as a seed. 
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Spinal Canal: Detection of 
Seed Voxels

Original image

Cropped V.C.

Detected best-fitting
circle and its center

Edge mapV.C.: vertebral column
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Spinal Canal: Detection of 
Seed Voxels

c=15 pixels 
=6.15 mm

c=16 pixels 
=6.56 mm

c=17 pixels 
=6.97 mm

c=18 pixels 
=7.38 mm

c=19 pixels 
=7.79 mm

c=21 pixels 
=8.61 mm

*
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Spinal Canal: Detection of 
Seed Voxels

Original image Cropped V.C. Candidate circlesEdge map
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Spinal Canal: Detection of 
Seed Voxels

c=13 pixels 
=7.15 mm

c=14 pixels
=7.70 mm

c=20 pixels
=11.00 mm

c=21 pixels
=11.55 mm

*

* *

*

*

*
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Segmentation of the Spinal Canal

Segmentation performed using fuzzy mapping and 
opening-by-reconstruction.

The detected seed voxels from a number of slices in the 
thoracic region were used as markers.

The mean and the standard deviation calculated within 
the  neighborhood of 21 x 21 pixels of each of the seed    
voxels.

The result morphologically closed using a tubular 
structuring element with radius 2 mm and height 10 mm, 
and the convex hull.
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Results: Spinal Canal

--- contours
drawn by a
radiologist

--- contours
obtained by 
the proposed
methods
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Results: Spinal Canal

Quantitative assessment:

Number of CT exams: 3 

Number of selected slices: 21

Average MDCP: 0.62 mm

Average Hausdorff distance: 1.60 mm
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Diaphragm

• Double-domed muscle separating the thorax from the 
abdomen.

• Directly below the lungs: extract the lower surfaces of the 
lungs and use them to obtain the diaphragm.

• Model each dome using linear least-squares and obtain 
final representation using deformable contours.
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Delineation of the Diaphragm

Remove external air, peripheral artifacts, and the skin

Segment the lungs

Apply the linear least−squares (LLS) estimation procedure

Remove peripheral fat, peripheral muscle, the ribs, and the spine

Refine diaphragm model using active contours

Extract the lower surface of the lungs

Original CT volume

Diaphragm surface
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Segmentation of the Lungs

• Easily distinguishable from the rest of body.

• The lungs form the single-largest volume of air in the body.

• Iterative procedure to determine the optimal threshold:

• Procedure modified for children to exclude air regions inside   
bowels.
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Segmentation of the Lungs: Results
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Delineation of the Diaphragm

Representation of the diaphragm using LLS:

right-dome surface left-dome surface

0
20

40
60

70 0

20

40

60
70

27

31

35

39

0

20

40

60
70 0

20

40

60
70

27

31

35

39



105

Delineation of the Diaphragm

combined surface after applying active contour

Representation of the diaphragm using 
LLS and active contours:
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Delineation of the Diaphragm

Segmented lungs and the diaphragm

Representation of the diaphragm using 
LLS and active contours:
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Results: Diaphragm

--- contours drawn by a radiologist
--- contours obtained by the proposed methods
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Results: Diaphragm

Quantitative assessment:

Number of CT exams: 11 (of six patients)

Number of selected slices: 109

Average MDCP in 3D: 6.05 mm

Average maximum Hausdorff distance in 3D: 28.03 mm



109

Removal of the Thoracic Cavity
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Delineation of the Pelvic Girdle

Automatic detection of seed 
voxels using information 
related to  

the spinal canal,

the vertebral column, and

the peripheral fat boundary. 
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Delineation of the Pelvic Girdle

Automatic segmentation performed using fuzzy 
mapping and opening-by-reconstruction (in 3D).
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Results: Pelvic Girdle

-- contours drawn by a radiologist

-- contours obtained by the proposed methods
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Results: Pelvic Girdle

Quantitative assessment:

Number of CT exams: 13 (of six patients)

Number of selected slices: 277

Average MDCP in 3D: 0.53 mm

Average maximum Hausdorff distance in 3D: 5.95 mm
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Modeling the Upper Surface 
of the Pelvic Girdle

Representation of the upper surface of the pelvic 
girdle using the LLS model and active contours:

Refined pelvic surfaceLinear least-squares model
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Removal of the Pelvic Cavity
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Results: Landmarks Identified
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• Malignant tumor
• Originates along the 

sympathetic ganglia or in 
the adrenal medulla.

• Accounts for 8—10% of 
all childhood cancers.

• 65% of the tumors are located 
in the abdomen.

Sympathetic 
Ganglia

Pelvis

Adrenal 
Medulla

Application to the Segmentation   
of Neuroblastic Tumors

Neuroblastoma
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CT Image of Neuroblastoma

• Abdominal tumors are most 
common: the worst prognosis.

• Generally heterogeneous,
with a mixture of:

necrosis (low density),
viable tumor (medium density),  
calcification (high density).

calcification

necrosis

viable tumor
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Tumor Response to Therapy

• Tumor shrinks
Intermediate density: active or viable tumor

Low density: necrosis
High density: calcified tissue

April 2001 June 2001 September 2001



120Tumor mass enclosing the aorta: unresectable
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Clinical and Image-based Analysis
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Original CT volume

Removal of external air, peripheral artifacts, and the skin layer

Removal of the peripheral fat region

Removal of the peripheral muscle Segmentation of the rib structure

Segmentation of the lungs

Segmentation of the vertebral column

Segmentation of the spinal canal; 
removal of the vertebral column

Delineation of the pelvic girdle; 
removal of the pelvic cavity

Removal of the 
spinal canal

Delineation of the diaphragm;
removal of the thoracic cavity 

Fuzzy segmentation of the tumor; threshold

Segmented tumor volume
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Segmentation of the Tumor

1. A region within the tumor mass manually selected.

2. Region statistics, µR and σR, calculated.

3. Data volume mapped using fuzzy mapping function
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where r is an arbitrary pixel in the image.
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Segmentation of the Tumor     

4. The selected region is used as a region marker

5. Reconstruction performed to obtain graded connected 
components using fuzzy-mapped image as mask and 
the region marker

6. Image thresholded using RRT σµ     5.0+=
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Segmentation of Neuroblastoma: 
Homogeneous Tumor

a b

c d

a. tumor segmented by 
a radiologist

b. user-selected region 
marker

c. result of opening-
by-reconstruction

d. final result of 
segmentation
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a b

c d

a. tumor segmented by 
a radiologist

b. user-selected region 
marker

c. result of opening-
by-reconstruction

d. final result of 
segmentation

Segmentation of Neuroblastoma: 
Heterogeneous Tumor
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Segmentation of Neuroblastoma: 
Diffuse Tumor

a. tumor segmented by 
a radiologist

b. user-selected region 
marker

c. result of opening-
by-reconstruction

d. final result of 
segmentation

a b

c d
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Result of Segmentation: 
Homogeneous Tumor

Tumor segmented 
by a radiologist

Initial result of tumor 
segmentation

After removal of the 
thoracic cavity

After removal of regions 
below the pelvic surface
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Tumor segmented 
by a radiologist

Initial result of tumor 
segmentation

After removal of the 
thoracic cavity

After removal of regions 
below the pelvic surface

Result of Segmentation: 
Heterogeneous Tumor
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Tumor segmented 
by a radiologist

Initial result of tumor 
segmentation

After removal of the 
thoracic cavity

After removal of regions 
below the pelvic surface

Result of Segmentation: 
Diffuse Tumor
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Results
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Results

• Effect of removal of the thoracic cavity:
false-positive rate reduced by 8.3%, on the  
average, over 10 CT exams of four patients.

• Effect of removal of the vertebral column and the 
regions below the pelvic surface: false-positive   
rate reduced by 10.3%, on the average.

• True-positive rate: 82.1%, on the average.
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Conclusion

The proposed methods:

separate the thoracic, abdominal, and pelvic 
cavities for further consideration;

facilitate atlas-based and landmark-based   
approaches to segmentation of medical images;

aid in reducing the false-positive error rate  
in the result of segmentation of tumors.
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Future work

Incorporation of other abdominal, thoracic, and 
pelvic landmarks.

Extension of the methods to other imaging modalities.

Implementation of competitive region growing for 
segmentation of multiple organs and tumors.

Estimation of tissue composition in tumor mass using 
Gaussian mixture model.
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