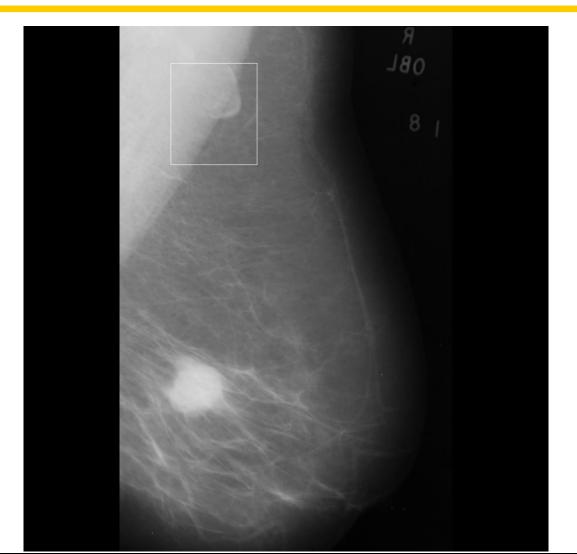
Fractal Analysis of Breast Masses in Mammograms

Rangaraj M. Rangayyan Professor Emeritus of Electrical and Computer Engineering Schulich School of Engineering Calgary, Alberta, CANADA

Breast Masses and Tumors

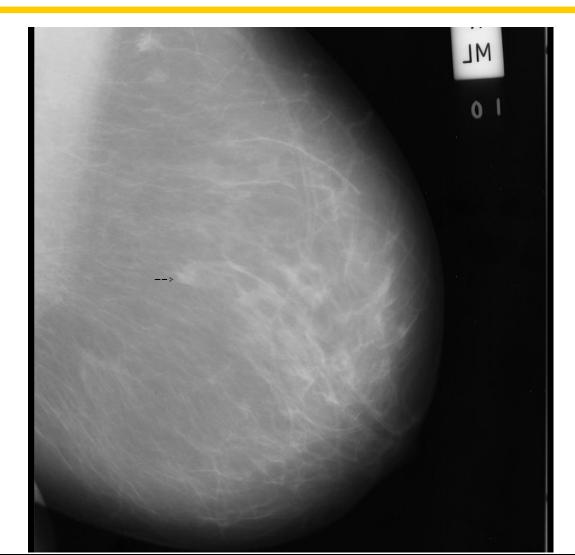
- Benign masses
 - > Round or oval, smooth, macrolobulated
 - Homogeneous
 - > Well-defined, well-circumscribed, sharp
- Malignant tumors (breast cancer)
 - Spiculated, rough, microlobulated
 - Heterogeneous
 - > Ill-defined, ill-circumscribed, blurry

Mammogram with a Benign Mass

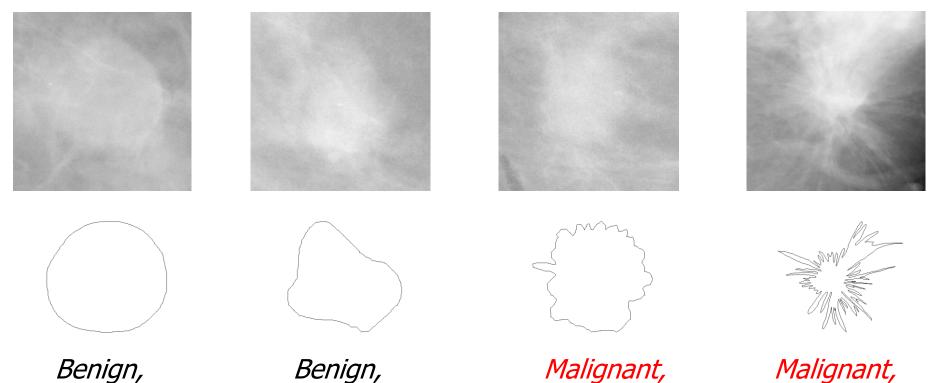


Mammogram with a Malignant Tumor

Mammogram with a Malignant Tumor



Examples of Breast Masses



Benign, round

Benign, macrolobulated Malignant, microlobulated

spiculated

Fractals and Breast Masses

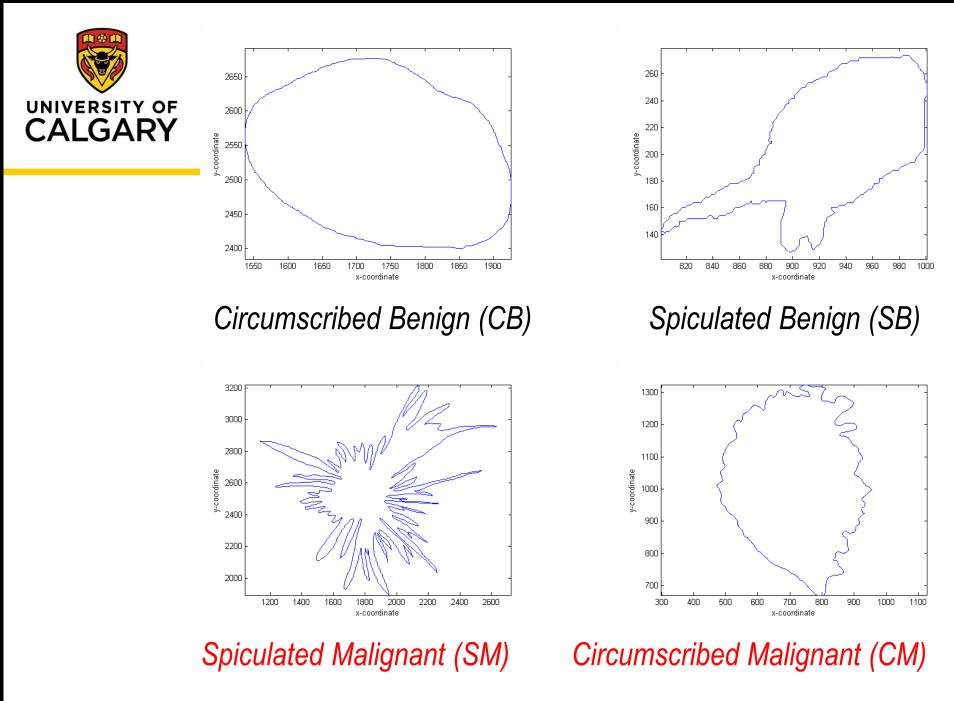
Self similarity at multiple scales: macrolobulated versus microlobulated contours

Nested patterns or complexity:

- smooth versus rough contours
- convex versus spiculated contours
- geometric versus space-filling curves

Cauliflower as a Fractal

Cauliflower as a Fractal



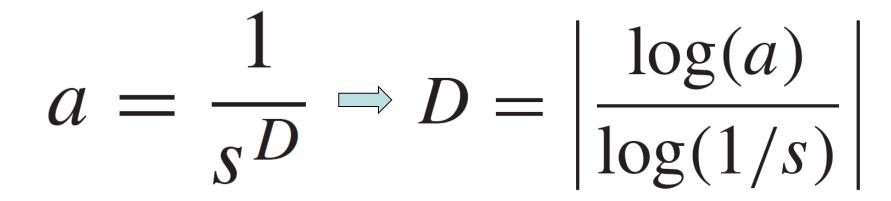
Fractal Dimension: Application to Breast Masses

Fractal dimension can characterize the shape differences between benign masses and malignant tumors

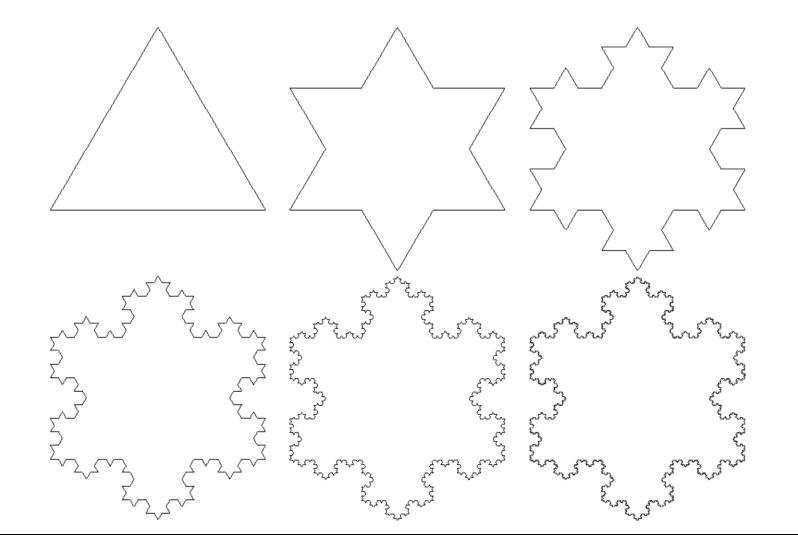
 Fractal analysis can also be used to characterize the texture of suspicious regions in mammograms

Self-similarity Dimension

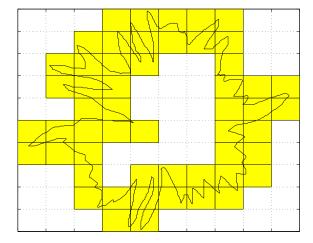
a = number of self-similar pieces 1/s = reduction factor D = self-similarity dimension

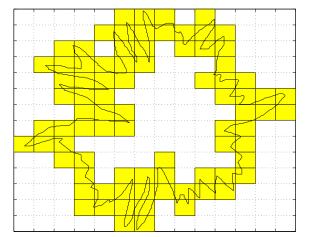


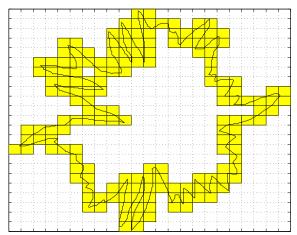
The Koch Snowflake Fractal Dimension = 1.262



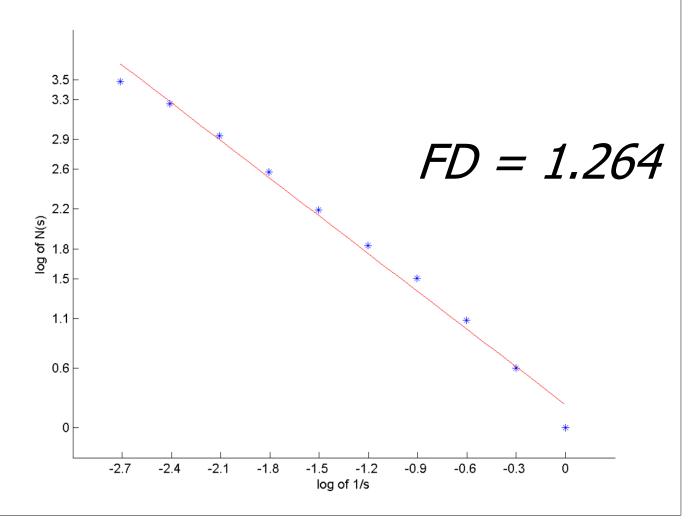
The Box-counting Method







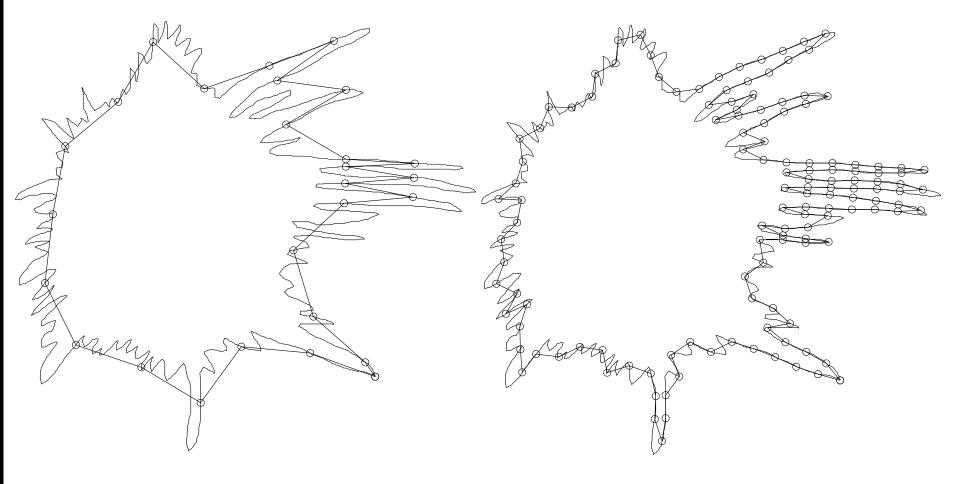
Result of Box-counting for the Koch Snowflake



The Ruler Method

Let *u* be the length measured with a ruler of size s $u = c \ \frac{1}{s^d}$ D = 1 + d $\log(u) = \log(c) + d \log(1/s)$

The Ruler Method Applied to a 2D Contour

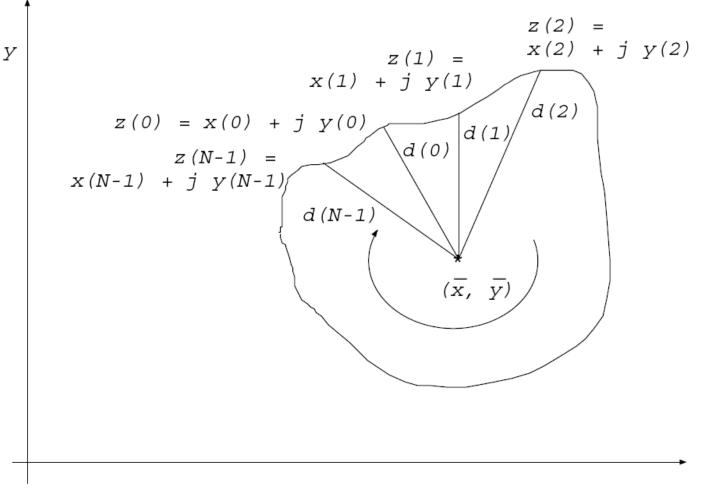


1D Signature of a 2D Contour

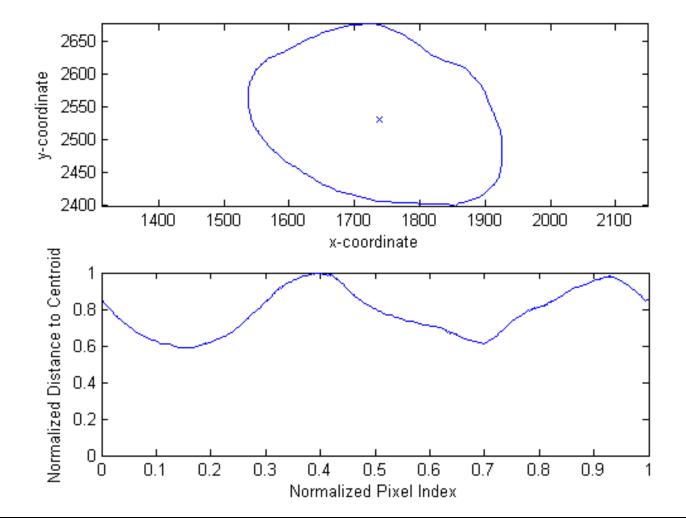
A 2D contour may be converted to a 1D signature using the distance of each contour point to the centroid (x_{0}, y_{0})

$$d = [(x - x_0)^2 + (y - y_0)^2]^{1/2}$$

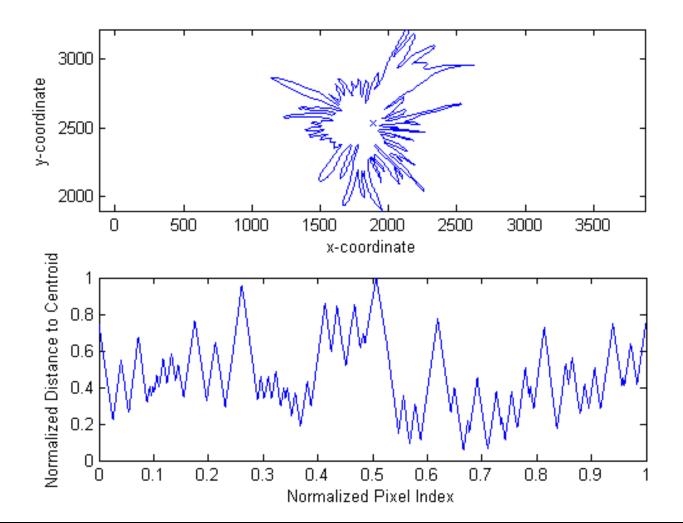
1D Signature of a 2D Contour



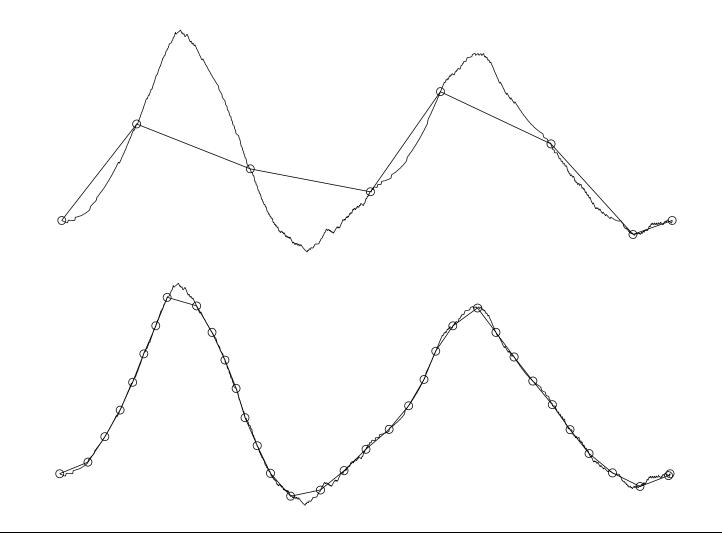
1D Signature of a Benign Mass



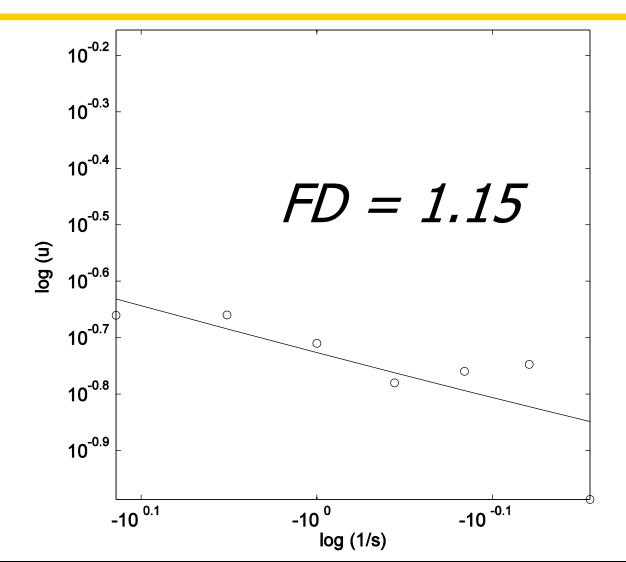
1D Signature of a Malignant Tumor



The Ruler Method Applied to a 1D Signature of a 2D Contour



The Ruler Method Applied to a 1D Signature of a 2D Contour



Fractional Brownian Motion

$$var[V(t_2) - V(t_1)] \propto |t_2 - t_1|^{2H}$$

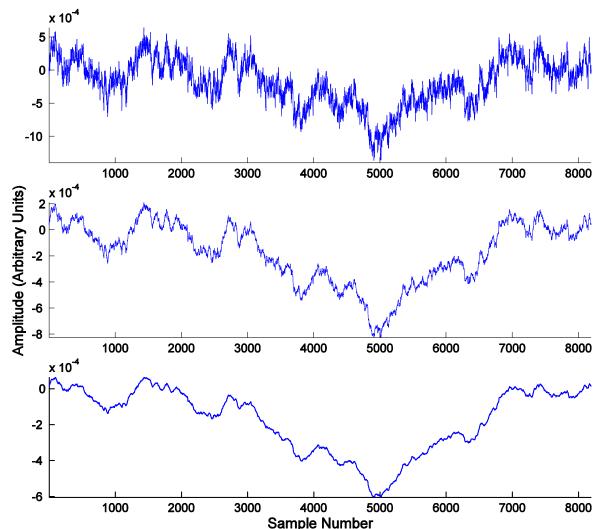
Hurst exponent 0 < H < 1

For a self-affine process in the *n*-dimensional Euclidean space

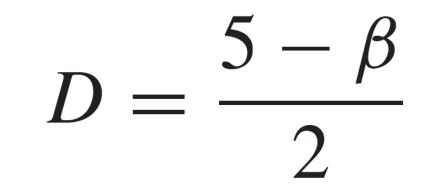
$$D + H = n + 1$$

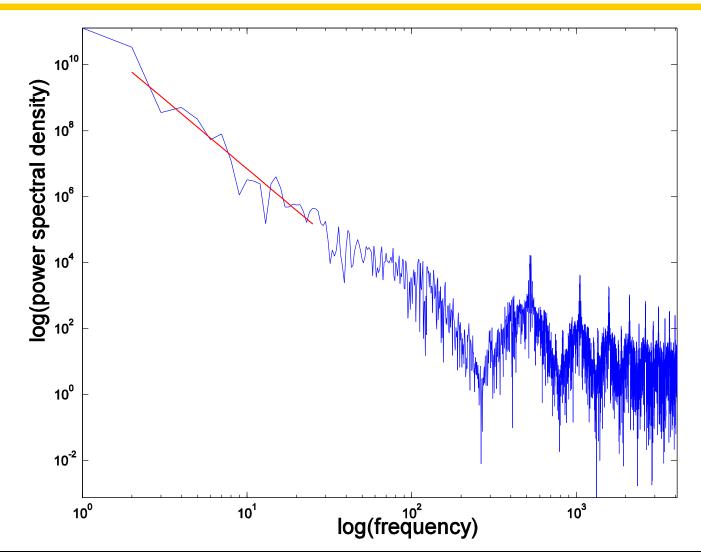
Fractional Brownian Motion

Hurst exponent = 0.2 model FD = 1.8estimated FD = 1.807 Hurst exponent = 0.5 model FD = 1.5estimated FD = 1.5076Hurst exponent = 0.8 model FD = 1.2estimated FD = 1.2081

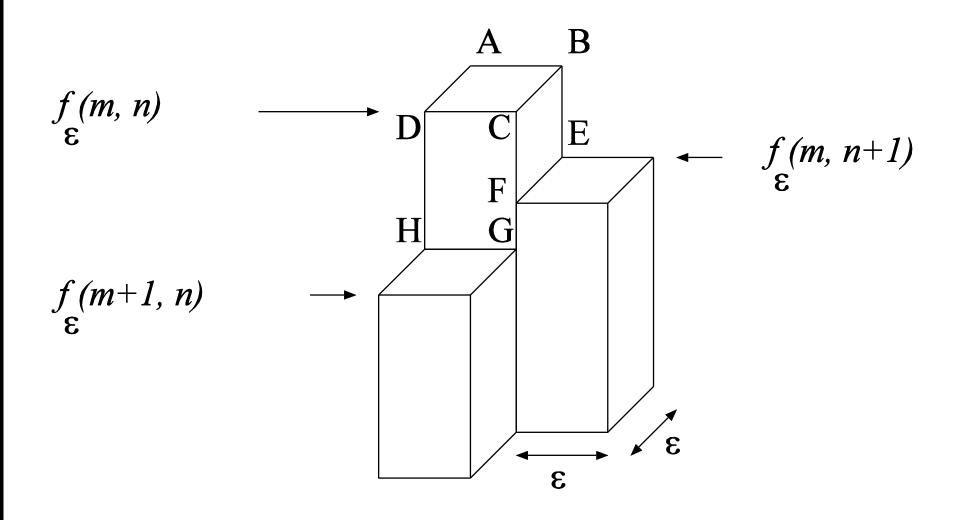


 $S_V(f) \propto \frac{1}{f^{\beta}}$





Fractal Analysis of Grayscale Images: Blanket Method



Fractal Analysis of Grayscale Images: Blanket Method

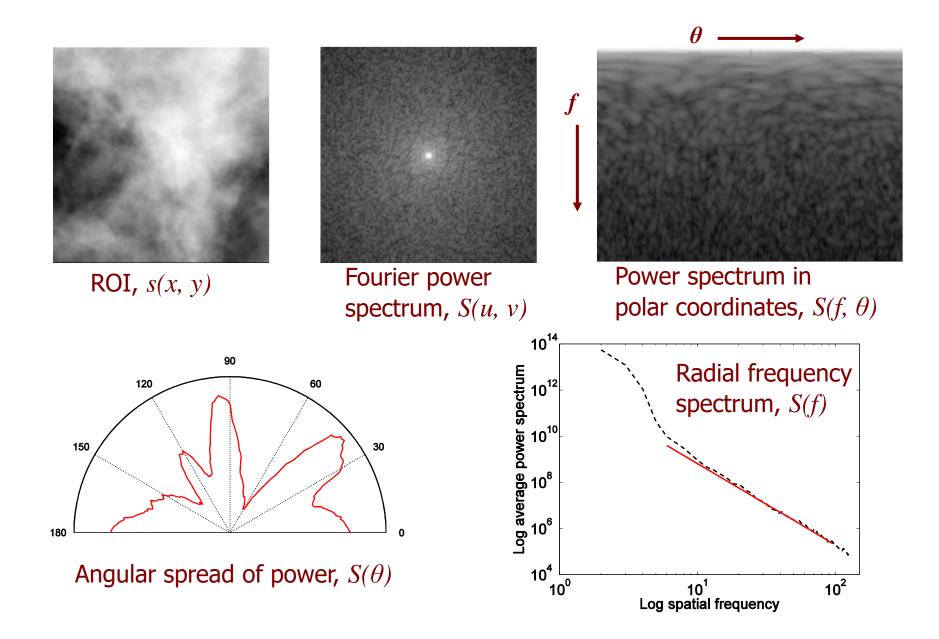
$$A(\varepsilon) = \sum_{m=0}^{N-2} \sum_{n=0}^{N-2} \{ \varepsilon^2 + \varepsilon [|f_{\varepsilon}(m,n) - f_{\varepsilon}(m,n+1)| + |f_{\varepsilon}(m,n) - f_{\varepsilon}(m+1,n)|] \}$$

$$D = 2 - \frac{\Delta \log[A(\varepsilon)]}{\Delta \log[\varepsilon]}$$

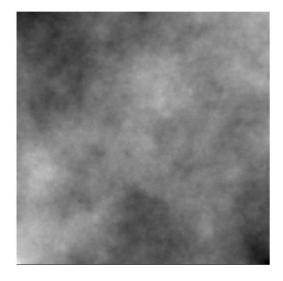
Fractal Analysis of Grayscale Images: Spectral Method

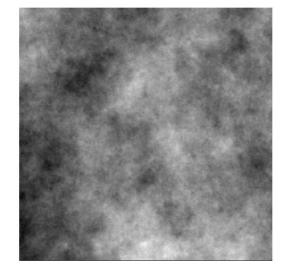
- 1. Compute the 2D Fourier transform of the image
- 2. Compute the 2D PSD
- 3. Transform the 2D PSD into a 1D PSD by radial averaging
- 4. Fit a straight line to a selected range of frequencies of the 1D PSD on a log-log scale
- 5. Determine the slope β of the best-fitting straight line

$$FD = \frac{8 - \beta}{2}$$



Fractal Analysis of Grayscale Images: Example





Model FD = 2.20Blanket FD = 2.50PSA FD = 2.66 Model FD = 2.40 Blanket FD = 2.57 PSA FD = 2.67 Model FD = 2.60 Blanket FD = 2.70 PSA FD = 2.68

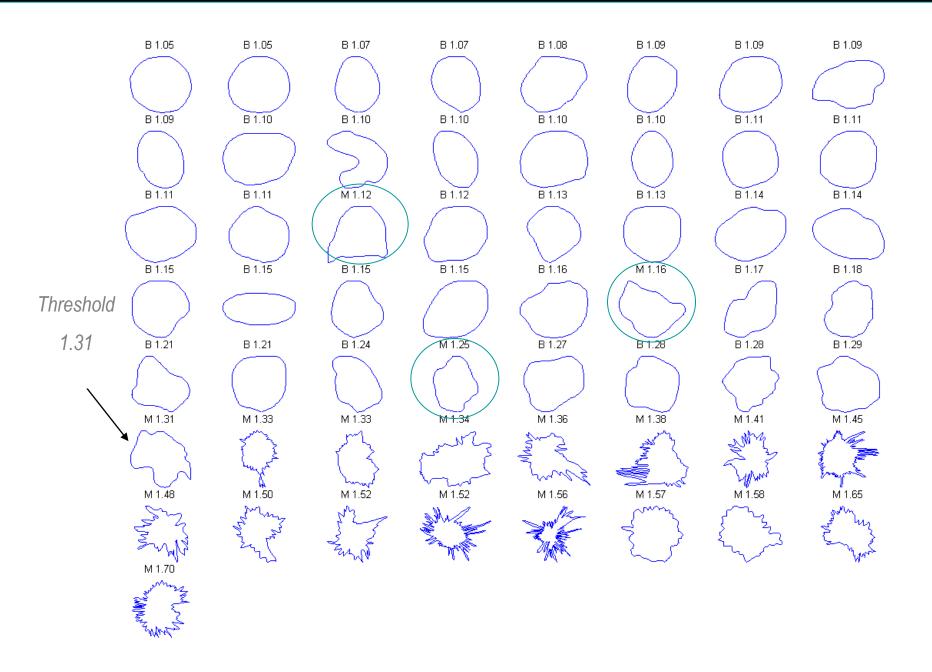
Experiments with Contours of Breast Masses in Mammograms

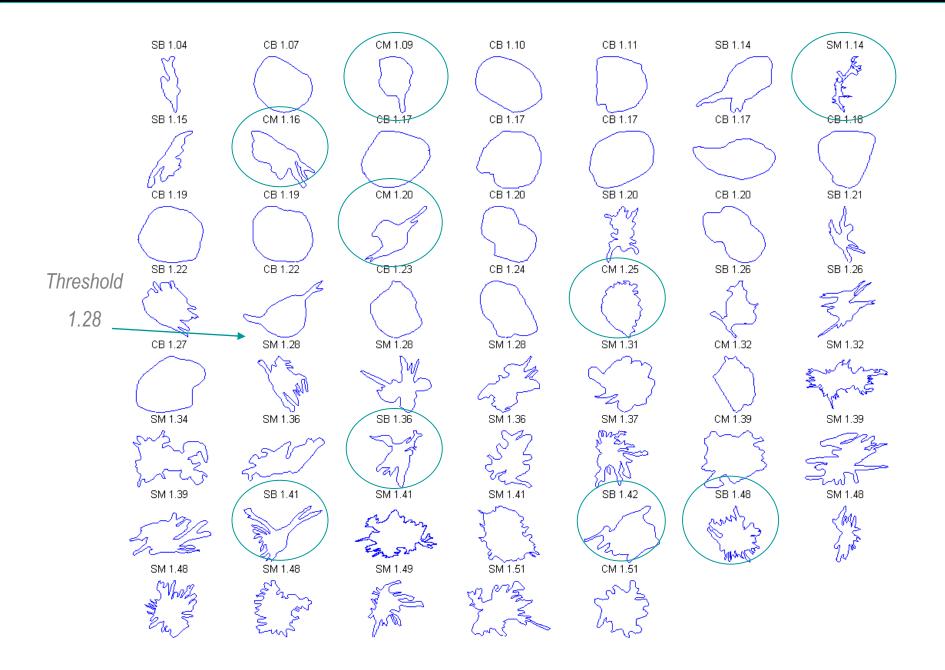
Dataset # 1:

• 57 contours: 37 benign, 20 malignant

Dataset # 2:

- 54 contours: 28 benign, 26 malignant
 - 16 CB: circumscribed benign
 - 12 SB: spiculated benign
 - 7 CM: circumscribed malignant
 - 19 SM: spiculated malignant





Classification of Masses

Dataset # 1

Dataset # 2

- Fractal dimension
 - ➢ Benign: 1.14 ± 0.06
 - Malignant: 1.43 ± 0.16
- Classification accuracy
 54/57 = 94.7%

- Fractal dimension
 - Benign: 1.21 ± 0.10
 - Malignant: 1.35 ± 0.12
- Classification accuracy
 45/54 = 83.3%

with the ruler method and 1D signatures of the contours

Pattern Classification

Leave-one-out method

Receiver operating characteristics (ROC)

- Sensitivity = True-positive fraction
- > Specificity = 1 False-positive fraction
- Classification accuracy: area under the ROC curve (AUC)

Results of Classification AUC with Fractal Dimension

Method	Dataset 1	Dataset 2	Both	
2D box counting	0.90	0.75	0.84	
1D box counting	0.89	0.80	0.88	
2D ruler	2D ruler 0.94		0.88	
1D ruler	0.91	0.80	0.89	

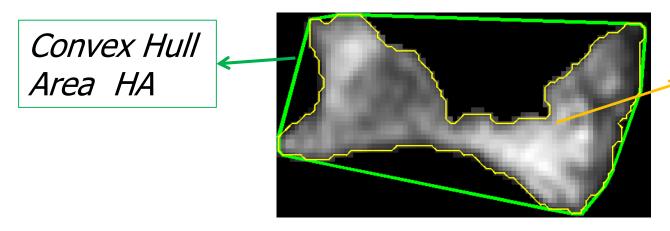
Comparative Analysis with Shape Factors: Compactness

Compactness C based on area A and perimeter P

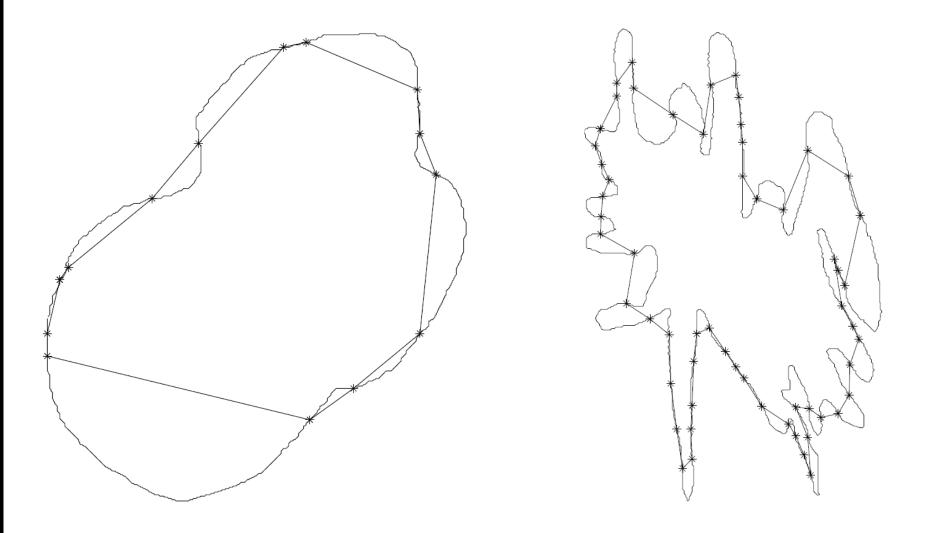
$$C = 1 - \frac{4\pi A}{P^2}$$

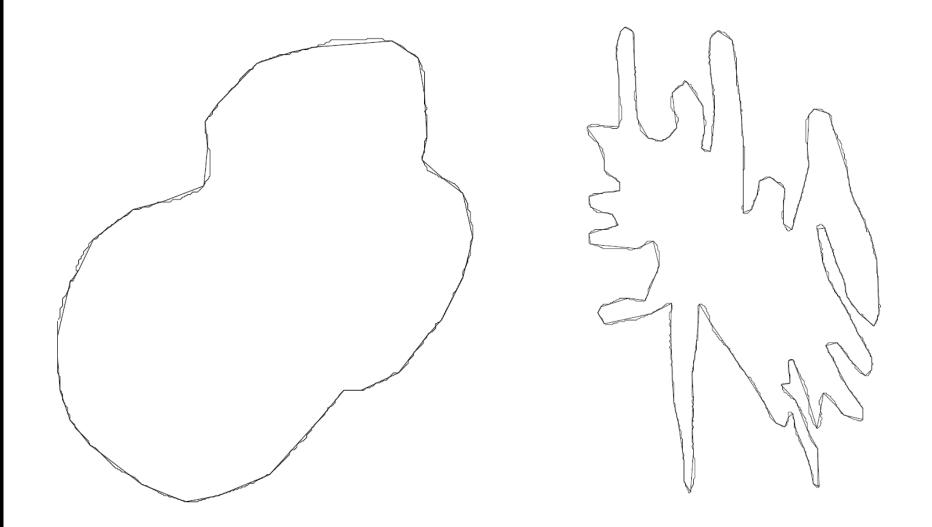
Convex Deficiency

CD = (HA - OA) / HA

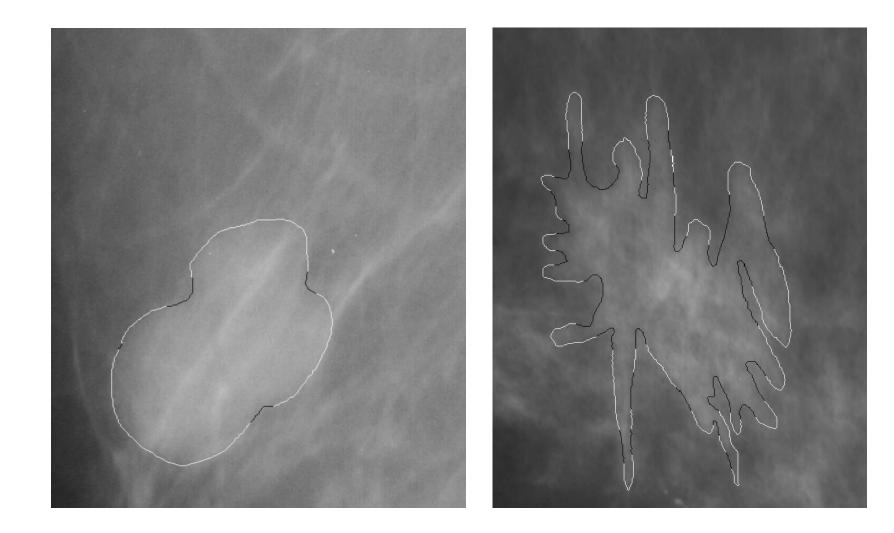


Detection of Points of Inflexion: Benign (14) vs Malignant (58)





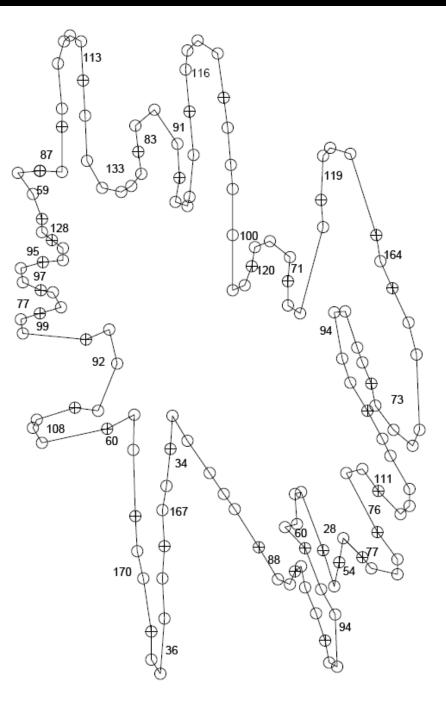
Fractional Concavity



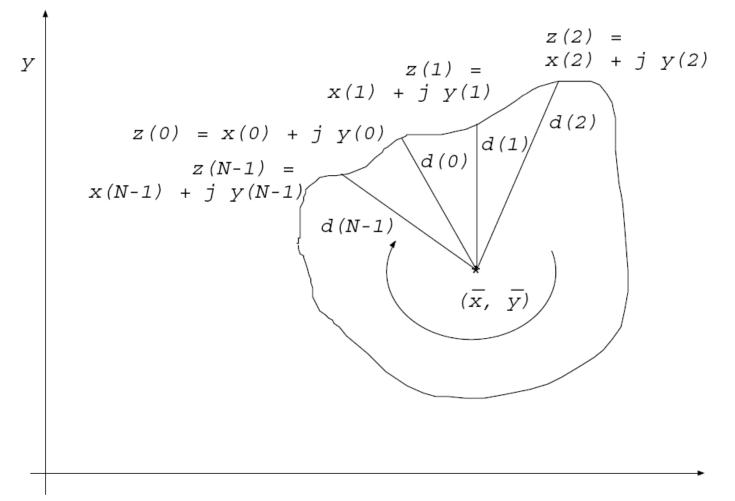
Spiculation Index

♦ Each segment of the contour is treated as a spicule candidate with length S_i and angle $θ_i$

$$SI = \frac{\sum_{i=1}^{N} (1 + \cos \theta_i) S_i}{\sum_{i=1}^{N} S_i}$$



Fourier Descriptors using CALGARY Coordinates of Contour Pixels



Fourier Descriptors

$$z(n) = x(n) + j y(n), n = 0, 1, 2, \dots, N-1$$

$$Z(k) = \frac{1}{N} \sum_{n=0}^{N-1} z(n) \exp\left[-j \frac{2\pi}{N} nk\right]$$

Fourier Factor from Normalized Fourier Descriptors

$$Z_o(k) = \begin{cases} 0, & k = 0; \\ \frac{Z(k)}{Z(1)}, & \text{otherwise} \end{cases}$$

$$ff = 1 - \frac{\sum_{k=-N/2+1}^{N/2} |Z_o(k)|/|k|}{\sum_{k=-N/2+1}^{N/2} |Z_o(k)|}$$

Benign versus Malignant Classification Performance: AUC

0.77	
0.87	
0.88	
0.89	
0.90	
0.93	
	0.87 0.88 0.89 0.90

with the two datasets combined (111 contours) and the ruler method on 1D signatures of the contours to compute FD

Additional Experiments Including FFDMs

Table 10.1List of the nine shape factors and their individual AUC values for each datasetused in the present study.

Shape Factor	Dataset A	Dataset B	Dataset C	
FD-ruler 1D	0.9419	0.8228	0.8794	
FD-ruler 2D	0.9743	0.8448	0.9084	
FD-box 1D	0.9230	0.8173	0.8752	
FD-box 2D	0.9135	0.7761	0.8695	
cf	0.9851	0.7967	0.9175	
ĊD	0.9824	0.7308	0.9135	
f_{cc}	0.9973	0.7527	0.8367	
SI	0.9662	0.8118	0.8887	
ff	0.9878	0.8173	0.9040	

Table 10.2 List of the shape factors selected and the AUC values with various classifiers for the datasets used in the present study and combinations thereof. The rows indicated with an asterisk represent the features selected most often in the LOO procedure for each dataset listed. The set of selected features and the dimension of the feature vector (N_f) varies in each step of the LOO procedure (for each mass being tested). The initial set of features has a dimension of 9.

Feature Selection	Classifier	Dataset A	Dataset B	Dataset {A, B}	Dataset C	Dataset {A, B, C}
All	LDA	0.9797	0.7390	0.9117	0.8877	0.9267
features	QDA	0.9797	0.7885	0.9154	0.8500	0.9084
in Table 10.1	RBF	0.9919	0.7981	0.9348	0.9162	0.9309
Logistic	*	f_{cc}	FD-ruler 2D,	f_{cc} ,	FD-ruler 1D,	FD-ruler 1D,
regression			FD-box 2D	SI, CD	CD	f_{cc}
	LDA	0.9973	0.8448	0.9247	0.9243	0.9327
	QDA	0.9973	0.8393	0.9177	0.8982	0.9283
	RBF	0.9973	0.8599	0.9324	0.9264	0.9393
Stepwise	*	f_{cc}, SI	FD-ruler 2D,	f_{cc} ,	FD-ruler 1D,	FD-ruler 1D,
regression			FD-box 2D	SI, CD	cf, f_{cc}	cf, f_{cc}, SI, CD
	LDA	0.9919	0.8448	0.9247	0.9076	0.9297
	QDA	0.9920	0.8393	0.9177	0.8944	0.9044
	RBF	0.9973	0.8599	0.9324	0.9156	0.9362

- Significant differences exist in the fractal dimension between contours of malignant tumors and benign masses
- Fractal dimension can serve as a useful feature in computer-aided diagnosis of breast cancer

Thank you!

- Natural Sciences and Engineering Research Council of Canada
- Alberta Heritage Foundation for Medical Research
- Canadian Breast Cancer Foundation
- Dr. J. E. Leo Desautels, Thanh Cabral, Dr. Liang Shen, Dr. Naga Mudigonda, Dr. Nema El-Faramawy, Dr. Hilary Alto, Dr. Shantanu Banik, Dr. Faraz Oloumi, Lucas Frighetto-Pereira