
Rangaraj M. Rangayyan

Professor Emeritus of Electrical and Computer Engineering 

Schulich School of Engineering

Calgary, Alberta, CANADA

Fractal Analysis of Breast Masses
in Mammograms



Breast Masses and Tumors

❖Benign masses

➢ Round or oval, smooth, macrolobulated

➢ Homogeneous

➢ Well-defined, well-circumscribed, sharp

❖Malignant tumors (breast cancer)

➢ Spiculated, rough, microlobulated

➢ Heterogeneous

➢ Ill-defined, ill-circumscribed, blurry



Mammogram with a 
Benign Mass



Mammogram with a 
Malignant Tumor



Mammogram with a
Malignant Tumor



Examples of Breast Masses

Benign, Benign, Malignant,             Malignant, 
round               macrolobulated microlobulated spiculated



Fractals and  
Breast Masses

Self similarity at multiple scales:
macrolobulated versus 
microlobulated contours

Nested patterns or complexity:
• smooth versus rough contours
• convex versus spiculated contours
• geometric versus space-filling curves



Cauliflower as a Fractal



Cauliflower as a Fractal



Circumscribed Benign (CB) Spiculated Benign (SB)

Circumscribed Malignant (CM)Spiculated Malignant (SM)



Fractal Dimension: 
Application to Breast Masses

❖ Fractal dimension can characterize 

the shape differences between 

benign masses and malignant tumors

❖ Fractal analysis can also be used 

to characterize the texture of suspicious 
regions in mammograms



Self-similarity Dimension

a = number of self-similar pieces

1/s = reduction factor

D = self-similarity dimension



The Koch Snowflake 
Fractal Dimension = 1.262
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The Box-counting Method
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Result of Box-counting for 
the Koch Snowflake
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FD = 1.264



The Ruler Method

Let u be the length measured with a ruler of size s



The Ruler Method Applied 
to a 2D Contour



1D Signature of a 
2D Contour

A 2D contour may be converted to a 1D 
signature using the distance of each 
contour point to the centroid (x0, y0)

d = [ (x - x0) 
2 + (y – y0) 

2 ] 1/2



1D Signature of a 
2D Contour



1D Signature of a 
Benign Mass



1D Signature of a 
Malignant Tumor



The Ruler Method Applied to a 
1D Signature of a 2D Contour



The Ruler Method Applied to a 
1D Signature of a 2D Contour

FD = 1.15



Fractional Brownian Motion

Hurst exponent  0 < H < 1

For a self-affine process in the 
n-dimensional Euclidean space 

D + H = n + 1



Fractional Brownian Motion

Hurst  exponent = 0.2 
model FD = 1.8
estimated FD = 1.807

Hurst exponent = 0.5
model FD = 1.5
estimated FD = 1.5076

Hurst exponent = 0.8
model FD = 1.2
estimated FD = 1.2081



FD via Spectral Analysis
of Signatures of Contours



FD via Spectral Analysis
of Signatures of Contours



Fractal Analysis of Grayscale 
Images: Blanket Method



Fractal Analysis of Grayscale 
Images: Blanket Method



Fractal Analysis of Grayscale 
Images: Spectral Method

1. Compute the 2D Fourier transform of the image

2. Compute the 2D PSD

3. Transform the 2D PSD into a 1D PSD by radial averaging

4. Fit a straight line to a selected range of frequencies of the 

1D PSD on a log−log scale

5. Determine the slope β of the best-fitting straight line



ROI, s(x, y) Fourier power 

spectrum, S(u, v)

Power spectrum in

polar coordinates, S(f, θ)

θ

f

Angular spread of power, S(θ)

Radial frequency

spectrum, S(f)



Fractal Analysis of Grayscale 
Images: Example



Experiments with Contours of 
Breast Masses in Mammograms

❖Dataset # 1: 
• 57 contours: 37 benign, 20 malignant

❖Dataset # 2: 
• 54 contours: 28 benign, 26 malignant

▪ 16 CB: circumscribed benign

▪ 12 SB: spiculated benign

▪ 7 CM: circumscribed malignant

▪ 19 SM: spiculated malignant



Threshold 

1.31



Threshold 

1.28



Classification of Masses

Dataset # 1

❖ Fractal dimension

➢ Benign: 1.14 ± 0.06

➢ Malignant: 1.43 ± 0.16

❖ Classification accuracy 

➢ 54/57 = 94.7%

Dataset # 2 

❖ Fractal dimension

➢ Benign: 1.21 ± 0.10

➢ Malignant: 1.35 ± 0.12

❖ Classification accuracy 

➢ 45/54 = 83.3%

with the ruler method and 1D signatures of the contours



Pattern Classification

❖ Leave-one-out method

❖Receiver operating characteristics (ROC)

➢ Sensitivity = True-positive fraction

➢ Specificity = 1 – False-positive fraction 

➢ Classification accuracy: area under the

ROC curve (AUC)



Results of Classification 
AUC with Fractal Dimension

Method Dataset 1 Dataset 2 Both 

2D box 
counting

0.90 0.75 0.84

1D box 
counting

0.89 0.80 0.88

2D ruler 0.94 0.81 0.88

1D ruler 0.91 0.80 0.89



Comparative Analysis with 
Shape Factors: Compactness

❖Compactness C  based on area A  and
perimeter P 



Convex Deficiency

Object Area OA
Convex Hull 
Area  HA

CD  =  (HA – OA) / HA



Detection of Points of Inflexion: 
Benign (14)  vs Malignant (58)



Polygonal Modeling:
Benign (36) vs Malignant (146)



Fractional Concavity



Spiculation Index

❖ Each segment of the contour is treated as a 
spicule candidate with length Si and angle θi





Fourier Descriptors using 
Coordinates of Contour Pixels



Fourier Descriptors



Fourier Factor from 
Normalized Fourier Descriptors



Benign versus Malignant 
Classification Performance: AUC

❖ Fourier factor (FF) 0.77
❖ Compactness (C) 0.87
❖ Fractional concavity (Fcc)   0.88
❖ Fractal dimension (FD) 0.89
❖ Spiculation index (SI) 0.90
❖ [FD,  Fcc] 0.93

with the two datasets combined (111 contours) 
and the ruler method on 1D signatures of the 
contours to compute FD



Additional Experiments 
Including FFDMs



Additional Experiments 
Including FFDMs



Conclusion

❖ Significant differences exist in the fractal 
dimension between contours of malignant 
tumors and benign masses

❖ Fractal dimension can serve as a useful 
feature in computer-aided diagnosis of 
breast cancer
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