Computer-aided diagnosis of subtle signs of breast cancer: Architectural distortion in prior mammograms Rangaraj M. Rangayyan

Department of Electrical and Computer Engineering University of Calgary, Calgary, Alberta, CANADA

Mammography

Signs of Breast Cancer:

- Masses
- Calcifications
- Bilateral asymmetry
- Architectural distortion (often missed)

Masses

- Breast cancer causes a desmoplastic reaction in breast tissue
- A mass is observed as a bright, hyperdense object

Calcification

Deposits of calcium in breast tissue

Bilateral asymmetry

Differences in the overall density distribution in the two breasts

Computer-aided diagnosis

- Increased number of cancers detected
- Increased early-stage malignancies detected
- Increased recall rate
- Missed cases of architectural distortion

Architectural distortion

- Third most common mammographic sign of nonpalpable breast cancer
- The normal architecture of the breast is distorted
- No definite mass visible
- Spiculations radiating from a point
- Focal retraction or distortion at the edge of the parenchyma

Architectural distortion

spiculated

focal retraction

incipient mass

Normal vs architectural distortion

 UNIVERSITY OF CALGARY

Normal vs architectural distortion

Initial algorithm for detection of architectural distortion

1．Extract the orientation field

2．Filter and downsample the orientation field
3．Analyze orientation field using phase portraits
4．Postprocess the phase portrait maps
5．Detect sites of architectural distortion

Gabor filter

$$
\mathrm{g}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y}} \exp \left[-\frac{1}{2}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}\right)\right] \cos (2 \pi f x)
$$

Design parameters

Gabor parameters

- line thickness τ
- elongation I
- orientation θ

$$
\begin{aligned}
& f=\frac{1}{\tau} ; \quad \sigma_{x}=\frac{\tau}{2 \sqrt{2 \ln 2}} \\
& \sigma_{y}=l \sigma_{x} ;\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]
\end{aligned}
$$

Design of Gabor filters

Example of Gabor filtering

Log-magnitude Fourier spectrum

Inverted Y channel of retinal fundus image

Magnitude response of a single Gabor filter: $\tau=8, I=2.9, \theta=45^{\circ}$

Extracting the orientation field

 UNIVERSITY OFCALGARY

Compute the texture orientation (angle) at each pixel

Phase portraits

$$
\overrightarrow{\boldsymbol{v}}(x, y)=\binom{v_{x}}{v_{y}}=\mathbf{A}\binom{x}{y}+\mathbf{b}
$$

node

saddle

spiral

Texture analysis using phase portraits

Fit phase portrait model to the analysis window

Nonlinear
least squares

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cc}
1.1 & 0.3 \\
-0.2 & 1.7
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{l}
-4.8 \\
-7.9
\end{array}\right]
\end{aligned}
$$

Cast a vote at the fixed point $=\mathbf{A}^{-1} \mathbf{b}$ in the corresponding phase portrait map

Orientation field

Node
Saddle

Spiral
real eigenvalues
of same sign

Detection of architectural distortion

Initial results of detection

- Test dataset: 19 mammograms with architectural distortion (MIAS database)
- Sensitivity: 84\%
- 18 false positives per image!

Reduction of false positives

UNIVERSITY OF CALGARY

Rejection of confounding structures

- Confounding structures include
* Edges of vessels
* Intersections of vessels
* Edge of the pectoral muscle
* Edge of the fibroglandular disk
"Curvilinear Structures"

Nonmaximal suppression

ROI with a vessel

Gabor magnitude output

Output of nonmaximal suppression (NMS)

Rejection of confounding CLS

Output of NMS

CLS Retained

> Angle from the orientation field and direction perpendicular to the gradient vector differ by $<30^{\circ}$

Improved detection of sites of architectural distortion

Node map (without CLS analysis)

Node map
(with CLS analysis)

Free-response ROC analysis

Effect of condition number of matrix A on the orientation field

Example	Matrix A	Eigenvalues	Angle between principal axes	Condition number	Orientation field
A	$\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$	$\lambda_{1}=1$ $\lambda_{2}=3$	90°	3	
B	$\left[\begin{array}{cc}1 & 7.46 \\ 0 & 3\end{array}\right]$	$\begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3 \end{aligned}$	15°	21.85	
C	$\left[\begin{array}{cc}1 & 0 \\ 0 & 20\end{array}\right]$	$\begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=20 \end{aligned}$	90°	20	

Results

- 19 cases of architectural distortion
- 41 normal control mammograms (MIAS)
- Symmetric matrix \boldsymbol{A} : node and saddle only
- Condition number of $\boldsymbol{A}>3$: reject result
- Sensitivity: 84% at 4.5 false positives/image
- Sensitivity: 95\% at 9.9 false positives/image

Prior mammograms

Detection mammogram 1997
Prior mammogram 1996

Prior mammograms

Detection mammogram 1997
Prior mammogram 1996

Prior mammograms

Detection mammogram 1997

Prior mammogram 1996

I nterval cancer

* Breast cancer detected outside the screening program in the interval between scheduled screening sessions
: "Diagnostic mammograms" not available

Dataset

* 106 prior mammographic images of 56 individuals diagnosed with breast cancer (interval-cancer cases)
* Time interval between prior and detection (33 cases) average: 15 months, standard deviation: 7 months minimum: 1 month, maximum: 24 months
* 52 mammographic images of 13 normal individuals
* Normal control cases selected represent the penultimate screening visits at the time of preparation of the database

Interval cancer: site of architectural distortion
 Gabor Magnitude

Interval cancer: site of architectural distortion

Orientation field

Site of architectural distortion

Mammogram

Orientation field

Gabor magnitude

Node map

Interval cancer: potential sites of architectural distortion

Node map

Automatically detected ROIs

Examples of detected ROIs

True-positive

Automatically detected ROIs

Data Set	No. of Images	No. of ROIs 128×128 pixels at 200 um/pixel	No. of True- Positive ROIs	No. of False- Positive ROIs
Prior mammograms of 56 interval-cancer cases	106	2821	301	2520
Penultimate mammograms of 13 normal cases	52	1403	0	1403
Total	158	4224	301	3923

Feature extraction from ROIs

Fractal and spectral analysis

TP ROI , $s(x, y)$

Fourier power spectrum, $S(u, v)$

Power spectrum in polar coordinates, $S(f, \theta)$

Angular spread of power, $S(\theta)$

Laws' texture energy measures

* Operators of length five pixels may be generated by convolving the basic L3, E3, and S3 operators:

$$
\begin{aligned}
& >\angle 5=\angle 3 * L 3=\left[\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1
\end{array}\right] \\
& >E 5=\angle 3 * E 3=\left[\begin{array}{llll}
-1 & -2 & 0 & 2
\end{array}\right] \\
& >S 5=-E 3 * E 3=\left[\begin{array}{ccccc}
-1 & 0 & 2 & 0 & -1
\end{array}\right] \\
& \text { (local average) } \\
& >R 5=-S 3 * S 3=\left[\begin{array}{lllll}
1 & -4 & 6 & -4 & 1
\end{array}\right] \\
& >\text { (ripples) } \\
& >W 5=-E 3 * S 3=\left[\begin{array}{lllll}
-1 & 2 & 0 & -2 & 1
\end{array}\right] \text { (waves) }
\end{aligned}
$$

* 2D 5×5 convolution operators:

$$
\begin{aligned}
& >\angle 5 L 5=\angle 5^{\top} L 5 \\
& >W 5 W 5=W 5^{\top} W 5 \\
& >R 5 R 5=R S^{T} R 5 \text { etc. }
\end{aligned}
$$

Laws' texture energy

Sum of the absolute values in the filtered images in a 15×15 window

L5L5

W5W5

E5E5

R5R5

Geometrical transformation for Laws' feature extraction

A TP ROI

Gabor magnitude

Transformed ROI

R5R5

Transformed Gabor magnitude

R5R5

W5W5

L5L5

W5W5

L5L5

Analysis of angular spread: True-positive ROI

Frequency domain

Gabor magnitude

Gabor orientation

Coherence

Orientation strength

Analysis of angular spread： False－positive ROI

Frequency domain

Gabor
orientation

Orientation strength

Results with selected features

ClaSSifiers	AUC using the selected features with stepwise logistic regression
FLDA (Leave-one-ROI-out)	0.75
Bayesian (Leave-one-ROI-out)	0.76
SLFF-NN (Single-layer feed forward: tangent-sigmoid)	0.78
SLFF-NN* (Single-layer feed forward: tangent-sigmoid)	$\mathbf{0 . 7 8} \pm 0.02$

* Two-fold random subsampling, repeated 100 times

Free-response ROC

Sensitivity
80% at $5.8 \mathrm{FP} /$ image 90% at 8.1 FP/image
using features selected with stepwise logistic regression, the Bayesian classifier, and the leave-oneimage out method

Bayesian ranking of ROIs: unsuccessful case

Bayesian ranking of ROIs: successful detection

Geometrical analysis of spicules and Gabor angle response

Index of convergence of spicules

$$
\mathrm{ICS}=\sum_{i=1}^{P} \sum_{j=1}^{Q} M(i, j)|\cos [\theta(i, j)-\alpha(i, j)]|
$$

$P \times Q$: size of the ROI
$\theta(i, j)$: Gabor angle response within the range $\left[-89^{\circ}, 90^{\circ}\right]$
$M(i, j)$: Gabor magnitude response
$\alpha(i, j)$: angle of a pixel with respect to the horizontal toward the center of ROI, in the range $\left[-89^{\circ}, 90^{\circ}\right]$

Index of convergence of spicules

ICS quantifies the degree of alignment of each pixel toward the center of the ROI weighted by the Gabor magnitude response

FROC analysis

Sensitivity 80\%
5.3 FP/patient

90\%
6.3 FP/patient

Expected loci of breast tissue

Landmarking of mammograms:

 CALGARY

Derivation of expected loci of breast tissue: interpolation

Divergence with respect to the expected loci of breast tissue

$\gamma(i, j)=\frac{\sum_{m=1}^{L} \sum_{n=1}^{L}|M(m, n) \cos [\theta(m, n)-\phi(i, j)]|}{\sum_{m=1}^{L} \sum_{n=1}^{L} M(m, n)}$
M: Gabor magnitude response
θ : Gabor angle response
ϕ : expected orientation of breast tissue
L: 25 pixels at $200 \mu \mathrm{~m} /$ pixel
180 Gabor filters used over [-90, 90] degrees

$$
D(i, j)=1-\gamma(i, j)
$$

Orientation field of breast tissue obtained using Gabor filters

Divergence with respect to the expected loci of breast tissue

Original image

Divergence map
Thresholded map

Automatically detected regions of interest

ROC：$A U C=0.61$

FROC：

Sensitivity $=80 \%$ at 9．1 FP／patient

Combination of 86 features

- Geometrical features of spicules: 12
- Haralick's and Laws' texture features, fractal dimension: 25
- Angular spread, entropy: 15
- Haralick's measures with angle cooccurrence matrices: 28
- Statistical measures of angular dispersion and correlation: 6
- Feature selection with stepwise logistic regression
- Bayesian classifier with leave-one-patient-out validation: 80% sensitivity at 3.7 FP/ patient

Reduction of false positives

Reduction of false positives

Conclusion

"Our methods can detect early signs of breast cancer 15 months ahead of the time of clinical diagnosis with a sensitivity of 80% with fewer than 4 false positives per patient"

* Further work required:
> Detection of sites of architectural distortion at higher sensitivity and lower false-positive rates
> Application to direct digital mammograms and breast tomosynthesis images

Thank You!

- Natural Sciences and Engineering Research Council (NSERC) of Canada
- Alberta Heritage Foundation for Medical Research
- Alberta and Canadian Breast Cancer Foundation
- Screen Test: Alberta Program for the Early Detection of Breast Cancer
- Indian Institute of Technology Kharagpur
- Shastri Indo-Canadian Institute
- University of Calgary International Grants Committee
- Department of Information Technology, Government of India
- My collaborators and students:

Dr. J.E.L. Desautels, N. Mudigonda, H. Alto, F.J . Ayres, S. Banik, S. Prajna, J. Chakraborty, Dr. S. Mukhopadhyay
http:/ / people.ucalgary.ca/ ~ranga/

