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1 Laboratory Exercise: Acquisition of ECG and EMG Signals

1.1 Objectives

• Acquire the electrocardiogram (ECG) with and without noise at different heart rates.

• Acquire the electromyogram (EMG) at different levels of muscular contraction (force).

You will be using the signals acquired in subsequent lab exercises. You may share the signals
among students within your group.

Please bring a memory device to save your signal data.

The instructions may need to be modified according to the equipment and materials available.

1.2 Acquisition of ECG signals

Please ensure that the signal acquisition hardware is turned OFF before connecting or discon-
necting any device. The lab staff will help you identify the devices.

Prepare your experimental subject and acquire ECG signals as follows:

1. Apply a small amount of “Nuprep” gel (abrasive skin prepping gel) to the skin where the
electrode will be placed: use the flat, inner parts of the left wrist, the right wrist, and the
right ankle. Rub the gel in a circular motion and remove it with a tissue napkin.

2. Apply a small amount of “Signa Cream” (electrode cream) to the same areas. Rub the
cream in a circular motion; do not remove the cream.

3. Apply an electrode to each prepared area as follows: black lead (positive) on the left arm;
white lead (negative) on the right arm; green lead (reference or ground) on the right leg.
This will give you Lead I of the standard ECG (see Section 1.2.5 and Figure 1.30 on p31 of
the textbook).

4. Attach the appropriate wire (color coded) to each electrode and connect the ECG cable to
the system.

5. Turn on the “Powerlab” system and the “Chart 5” software package on the computer. Select
Chanel 3 from the “Settings” menu. Set the “Bioamp” amplifier, filter, and tracing options
as follows: amplitude range 5 mV; lowpass 100 Hz; highpass 0.1 Hz; sampling rate 200 Hz;
notch filter ON; chart speed 10:1. Please confirm your experimental setup with the lab
instructor before proceeding to the next step.

6. Press “Start” to activate signal acquisition.

7. Use the “Auto-scale” feature (on the left-hand side of the screen) to calibrate, if needed.
Repeat as necessary until the signal appears to be stable.

8. With the subject remaining steady, start a new recording session. Use a new file name
before starting a new session. Record a stable ECG signal for two minutes. Press “Stop”
to end signal acquisition. Use the “Save As...” feature to export your data in the “Chart
Data (*.txt)” format; use an appropriate file name.
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9. Change the notch filter setting to OFF. Get your subject to introduce some noise into the
signal by moving one or both arms, or clenching and releasing his/her fists. Remove one of
the electrodes, remove some of the gel, replace the electrode, and observe the noise in the
signal. Start a new recording session with a new file name and record the noisy ECG signal
for two minutes. Press “Stop” to end signal acquisition. Use the “Save As...” feature to
export your data in the “Chart Data (*.txt)” format; use an appropriate file name.

10. Disconnect the electrodes from your subject. Ask the subject run or walk rapidly up and
down the stairs nearby, or do some vigorous exercise so as to increase the heart rate. Recon-
nect the electrodes, start a new recording session with a new file name, and acquire the ECG
signal for two minutes. Press “Stop” to end signal acquisition. Use the “Save As...” feature
to export your data in the “Chart Data (*.txt)” format; use an appropriate file name.

You should acquire and save three ECG data files: a clean signal, a noisy signal at a certain
heart rate, and another noisy signal at a higher heart rate. Each file should also contain the
sampled time instant for each sample of the ECG. Verify that the filter and other signal acquisition
parameters used are as specified above. Ensure that there are no “NaN” (Not a Number) entries
in your data files. Save the data files on to your own memory device for use in subsequent lab
exercises.

1.3 Acquisition of EMG signals

Please ensure that the signal acquisition hardware is turned OFF before connecting or discon-
necting any device. The lab staff will help you identify the devices.

Prepare your experimental subject and acquire EMG signals as follows:

1. Connect the force transducer to Chanel 2. Ask your experimental subject to grip the force
transducer with his/her dominant hand. Identify the extent of the muscle on the inner
forearm that contracts. Identify two areas to place the electrodes: one about 5–6 cm from
the wrist and the other 6–8 cm farther along the same muscle (toward the elbow). Apply a
small amount of “Nuprep” gel to the skin where the electrodes will be placed. Rub the gel
in a circular motion and remove it with a tissue. Apply a small amount of “Signa Cream”
to the same areas. Rub the cream in a circular motion; do not remove the cream.

2. Using the ECG cable as in the previous experiment, connect the electrodes provided to
acquire the EMG as follows: black lead (positive) on the inside of the arm, about 5–6 cm
from the wrist; white lead (negative) 6–8 cm farther along the same muscle (toward the
elbow). Attach the appropriate wire to each electrode.

3. Set the “Bioamp” amplifier, filter, and tracing options for the EMG signal on Channel 3 as
follows: amplitude 5 mV; lowpass 1 kHz; highpass 10 Hz; sampling rate 2 kHz; notch filter
ON; chart speed 20:1.

4. Set the input amplifier and filter options for the force signal on Channel 2 as follows:
amplitude 50 mV; lowpass 1 Hz; AC coupling OFF; single-sided ON.

5. Press “Start” to activate signal acquisition. Ask your experimental subject to squeeze the
force transducer to the maximum extent possible. Note the level of the force output; the
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output is not calibrated in units of force. Ask the subject to relax the muscle for a few
seconds, and squeeze the transducer in five steps, corresponding to approximately 10%,
30%, 50%, 70%, and 100% of the maximum, each lasting about two seconds, with resting
periods of two seconds between each squeeze. Practice this sequence 2–3 times so that
the entire sequence can be repeated with uniform force output at each level and the entire
sequence can be completed in about 20 seconds. Use the “Auto-scale” feature (on the
left-hand side of the screen for each channel) to calibrate, as necessary.

6. Ask your subject to relax and rest for a minute so as to prevent the effects of fatigue in the
muscle being exercised. When the subject is ready to repeat the experiment, start a new
recording session and record the full sequence of the EMG and force signals at five levels
of contraction as above. Press “Stop” to end signal acquisition. Verify that the signals are
of good quality and have the desired features. Use the “Save As...” feature to export your
data in the “Chart Data (*.txt)” format; use an appropriate file name.

You should acquire and save one data file with two channels, force and EMG, at five levels of
contraction with rest periods in between. Each file should also contain the sampled time instant
for each sample of the EMG. Verify that the filter and other signal acquisition parameters used
are as specified above. Ensure that there are no “NaN” entries in your data files. Save the data
file on to your own memory device for use in subsequent lab exercises.
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2 Laboratory Exercise: Matlab Practice

2.1 Objectives

• To become familiar with the basics of Matlab programming.

• To learn basic signal processing concepts: convolution and peak detection.

Study the document
http://people.ucalgary.ca/∼ranga/enel563/matlab tutorial.pdf

2.2 Convolution-A

Let x(n) and h(n) be two discrete-time signals, as follows:

x(n) = 2δ(n − 1) + 3δ(n − 2) + 4δ(n − 3) − 5δ(n − 4),

h(n) = [δ(n) + δ(n − 1) + δ(n − 2)]/3. (1)

1. Write a Matlab program to represent the signals x(n) and h(n) as vectors, and plot the
signals.

2. In your Matlab program, compute y(n) = x(n) ∗ h(n) using the command conv. Plot the
input signals and the resulting signal in a single figure using subplot as required; use the
stem command to obtain stem plots. Ensure that all subplots have the same limits on their
axes.

3. In your lab report, describe the nature and effect of the convolution kernel h(n).

2.3 Convolution-B

Let x1(t) and x2(t) be two continuous-time signals, as follows:

x1(t) = 2[u(t) − u(t − 2)],

x2(t) = 5[u(t) − u(t − 3)]. (2)

1. Prepare and plot the signals in a Matlab program. Let the sampling frequency be fs =
200 Hz and let the time axis of the plots for this exercise run from 0 to 10 seconds.

2. In your Matlab program, compute the result of the convolution of the two signals and plot
the result.

3. Explain the shape of the output signal.
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2.4 Peak detection

Consider the following signal:

x(t) = 5 sin(2π5t) + 3 cos(2π7t) .

Write a Matlab program to do the following:

1. Generate a sampled version of the signal at the sampling frequency fs = 100 Hz for the
duration of 0 − 10 seconds.

2. Write a Matlab function to find all the peaks and troughs or valleys (positive and negative)
in the sampled signal. A sample represents a peak or trough (or valley) if the preceding
and the subsequent samples are lower in magnitude than the sample under consideration.
The function should receive the sampled signal, and return a vector containing the indices
of the peaks in the signal. Plot the signal and mark the peaks using the following code:

figure;

plot(t, x, ’k-’); hold on;

plot(t(peaks), x(peaks), ’k*’); hold off;

xlabel(’time (s)’);

ylabel(’x(t)’);

where peaks is the vector of the indices of the peaks detected.

3. Modify the procedure described above to mark the troughs (valleys or local minima) in the
signal with the ’o’ symbol.

2.5 Plot your ECG signals

1. Write a Matlab program to extract a window of data of duration 10 seconds from each of the
three ECG signals you acquired in Lab 1, and plot the three extracted signals using subplot.
Calibrate and label the axes appropriately. Compare the ECG signals and describe your
observations in your report.

You may also use ecg_hfn.dat, ecg_hfn.m, ecg_lfn.dat, ecg_lfn.m, ECG3.dat, ECG4.dat,
ECG5.dat, ECG6.dat, and ECGS.m.

2. Prepare an additional expanded plot of a segment of the clean ECG signal you acquired so
as to show two full cardiac cycles. Calibrate and label the axes appropriately.

3. Apply the peak detection algorithm you developed for the exercise in Section 2.4 to the ECG
signal segment with two cardiac cycles, as described above, and plot the results. Write your
observations and comments on the results.
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2.6 Plot your EMG/force signals

1. Write a Matlab program to read the EMG/force data you acquired in Lab 1, and plot the
entire data in a two-channel plot. Calibrate and label the axes appropriately. Describe the
nature of the signal in your report.

You may also use the data files

EMGforce.txt, EMGforce2.txt, EM_EMG_SQUEEZE1.txt, and EM_EMG_SQUEEZE2.txt

as well as the program EMGforce.m. The sampling rate is 2000 Hz per channel and the
EMG sample values are in mV.

2. Prepare an additional expanded two-channel plot showing a segment of about 100 − 200
milliseconds with increasing force at the beginning of one of the contractions and the corre-
sponding EMG.

Describe the nature of the signal in your report.

2.7 Exercises to be worked by hand

1. Write the equation for the convolution of two continuous-time signals.

2. Write the equation for the convolution of two discrete-time signals.

3. Calculate by hand the result of the convolution y(n) = x(n) ∗ h(n) for the signals given in
Equation 1. Show all steps of your calculations in your report.

4. Calculate by hand the result of the convolution y(t) = x1(t) ∗ x2(t) for the signals given in
Equation 2. Show all steps of your calculations in your report.

Does this result agree with the result of your Matlab program for the related problem in
Section 2.3? Describe and explain your findings.

2.8 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
load, length, conv, clc, clear all, close all, sin, function, figure, stem,

plot, subplot, axis, axis tight, axis equal, xlabel, ylabel, title.
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3 Laboratory Exercise: Analysis of the Relationship Between
Parameters of the EMG Signal and Muscular Force

3.1 Objectives

• To characterize the level of activity in EMG signals.

• To study the relationship between parameters of the EMG signal and muscular force.

3.2 Background

The EMG signal is the electrical signal associated with muscular contraction. From the EMG
signal that you acquired in Lab 1 at various levels of muscular force exerted, it is evident that the
level of activity of the EMG signal increases with force; see Section 1.2.4 and Figure 1.20 of the
textbook for details on the EMG signal. In this lab exercise, you will explore several measures,
features, or parameters derived from EMG signals, and study their relationships to the associated
muscular force.

The dynamic range (DR) of a signal is the difference between its maximum and minimum
values over a specified duration. This range of values is also referred to as the peak-to-peak swing
or range.

The average power of a signal is provided by the mean-squared (MS) value over a specified
duration of time; the average magnitude over the same duration is given by the root-mean-squared
(RMS) value. With the mean of the EMG signal being zero, the RMS value is equal to the standard
deviation of the signal.

An approximate indicator of the level of activity in a signal is given by the number of times
the signal crosses the zero line (assuming a mean value of zero; if the mean is not zero, it should
be subtracted from the signal). A zero crossing is said to occur when the sign of a sample of the
signal is different from the sign of the preceding sample. The average number of zero crossings over
a certain period of time is known as the zero-crossing rate (ZCR). It is expected that increased
presence of high-frequency components in a signal will lead to larger ZCR. See Section 3.2.1 of
the textbook for a discussion on statistical parameters of random signals. See also Sections 5.6
and 5.9 on statistical analysis of EMG signals.

In order to investigate the relationship that may exist between an independent variable (mus-
cular force in the present exercise) and a measured parameter or variable (DR, MS, RMS, or
ZCR), it is common practice to fit a mathematical function or curve to the data samples available
and examine the accuracy of the underlying model (goodness of fit). In the present lab exercise,
you will investigate the appropriateness of linear fits (straight-line or linear models) to represent
the variation of each parameter with force.

See http://mathworld.wolfram.com/CorrelationCoefficient.html for details on linear
least-squares fitting and the correlation coefficient.

3.3 Exercises to be worked by hand

You are given an array of sampled values of a signal x(n), n = 1, 2, . . . , N .
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1. Write equations to define the following values:

(a) the mean value,

(b) the variance,

(c) the standard deviation,

(d) the MS value, and

(e) the RMS value of the signal.

2. Write an equation to transform the signal x(n) to another signal y(n) such that the values
of y(n) are in the range 0 to 1.

3.4 Parametric analysis of the EMG

Develop a Matlab program to perform the following analysis:

1. Load the EMG signal that you acquired in Lab 1. (Remove the header information.) Nor-
malize the force signal such that the minimum value is zero and the maximum value (cor-
responding to the maximum voluntary contraction or MVC) is 100. Plot the EMG signal
(in mV) and normalized force (in %MVC) against the time axis in two subplots.

You may also use the data files

EMGforce.txt, EMGforce2.txt, EM_EMG_SQUEEZE1.txt, and EM_EMG_SQUEEZE2.txt

as well as the program EMGforce.m. The sampling rate is 2000 Hz per channel and the
EMG sample values are in mV.

2. Manually identify portions (segments) corresponding to each level of contraction within
which the force remains almost constant. Store the time limits of each segment in your
Matlab code and mark the corresponding points on the plot described above.

3. For each segment of the EMG signal identified as above, compute the DR, MS, RMS, and
ZCR parameters. Ensure that you normalize ZCR to zero crossings per second by dividing
by the time duration (in seconds) of the corresponding segment. Similarly, ensure that
the MS and RMS values are computed using the appropriate number of samples for each
segment.

4. Plot the DR, MS, RMS, and ZCR values versus force in %MVC. Label the axes with the
appropriate units.

5. Using the polyfit function in Matlab, obtain a straight-line (linear) fit to represent the
variation of each EMG parameter versus force. Use polyval to evaluate the values of the
dependent variable given by the model for the available values of the independent variable.
Superimpose the linear models (straight-line fits) obtained on the plots of the parameters
in the preceding step.

6. Compute the correlation coefficient, r, with r2 given by the formula

r2 =

[

∑n=N
n=1 x(n) y(n) − N x̄ ȳ

]2

[

∑n=N
n=1 x2(n) − N x̄2

] [

∑n=N
n=1 y2(n) − N ȳ2

] , (3)
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where N is the number of samples of x or y representing the variables DR, MS, RMS, ZCR,
or force; x̄ is the mean of x. Using r, analyze the goodness of fit for each parameter and
discuss the appropriateness of the linear model. See Section 5.9 of the textbook for related
examples.

7. Tabulate the parameters of the linear model and r for each of the variables DR, MS, RMS,
and ZCR. Analyze the results and describe your findings.

3.5 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
polyfit, polyval, sign.
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4 Laboratory Exercise: Synchronized Averaging for Noise Re-
duction

4.1 Objectives

• To study the effect of synchronized averaging on noise.

• To study the effect of the number of trials in repeated stimulation for synchronized averaging.

4.2 Background

Linear filters do not perform well when the signal and noise spectra overlap. Synchronized signal
averaging can separate a repetitive signal from noise without distorting the signal (see Sections
3.5.1 and 3.11 of the textbook). Epochs of event-related potentials (ERP) and somatosensory
evoked potentials (SEP) may be obtained a number of times by repeated application of the
stimulus; they may then be averaged by using the stimulus as a trigger to align the epochs. If the
noise is random with zero mean and is uncorrelated with the signal, averaging will improve the
signal-to-noise ratio (SNR).

Let yk(n) represent one realization or observation of a signal, with k = 1, 2, . . . ,M representing
the ensemble index, and n = 1, 2, . . . , N representing the time-sample index. Here, M is the
number of copies (trials, events, epochs, or realizations) of the signal available, and N is the
number of the time samples in each copy of the signal (event). We may express the observed
signal as

yk(n) = xk(n) + ηk(n), (4)

where xk(n) represents the original uncorrupted signal and ηk(n) represents the noise in the kth

copy of the observed signal. Now, if for each instant of time n we average the M copies of the
signal, we get

ȳ(n) =
1

M

M
∑

k=1

yk(n) =
1

M

M
∑

k=1

xk(n) +
1

M

M
∑

k=1

ηk(n); n = 1, 2, . . . , N. (5)

If the repetitions of the signal are identical and aligned,
∑M

k=1 xk(n) = Mx(n). If the noise is
random, has zero mean, and has a variance of σ2

η,
∑M

k=1 ηk(n) will tend to zero as M increases,

with the variance given by Mσ2
η ; its RMS value is

√
Mση. Thus, the SNR of the signal will

increase by a factor of M√
M

or
√

M . The larger the number of epochs or realizations that are

averaged, the better will be the SNR of the result. Note that synchronized averaging is a type of
ensemble averaging.

Kamath et al. [1] applied synchronized averaging to improve the SNR of cortical evoked po-
tentials related to electrical and mechanical stimulation of the esophagus. Although improvement
in SNR was obtained in some experiments, they also observed that habituation took place as the
number of stimuli was increased beyond a certain limit, and that the use of the ERPs obtained
after habituation in averaging led to a reduction in the SNR.

Kamath et al. estimated the SNR as follows:
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Noise power:

σ2
η =

1

NT (M − 1)

M
∑

k=1

N
∑

n=1

[yk(n) − ȳ(n)]2 . (6)

Signal power:

σ2
ȳ =

1

NT

{

N
∑

n=1

[ȳ(n)]2
}

−
σ2

η

M
. (7)

SNR =
σ2

ȳ

σ2
η

. (8)

Here, T = 0.001 s is the sampling interval.

Kamath et al. also computed the Euclidean distance between the original ERP signals and
the averaged signal obtained as

D =
1

M

M
∑

k=1

√

√

√

√

N
∑

n=1

[yk(n) − ȳ(n)]2 . (9)

4.3 Exercises to be worked by hand

1. Write the equation to define the mean of a random variable x in terms of its probability
density function (PDF) px(x).

2. A variable y is given as y = x + η where x and η are statistically independent random
processes. Starting with the joint PDF of the random processes x and η, derive an expression
for the mean of y = x + η. Show all steps.

3. Write the definition of the variance of x using the expectation operator and the PDF of x.

4. With y defined as in item 2 above, derive the relationship between the variance of y, x, and
η using the expectation operator (no need to use PDFs and integrals in this case). Show all
steps.

4.4 Averaging of SEPs

Copy the data files E11 to E2424 and the Matlab program esoepX.m. The signals were filtered
to the band 0.1 − 100 Hz and sampled at 1000 Hz. The number of samples in each signal is
N = 511. (Signal data courtesy of Dr. M. V. Kamath, McMaster University, Hamilton, ON,
Canada.)

The signals are numbered as Ekk, where k is the trial number, with k = 1, 2, . . . ,M , and
M = 24. The signals are numbered in the time sequence of the stimulation trials.

Write a Matlab function to compute the average of a certain number of signals (trials) to be
specified as an input parameter.

Write a Matlab function to compute the SNR and Euclidean distance between a certain aver-
aged signal and the corresponding set of original signals used, as specified in Equations 8 and 9.
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Write a Matlab program to compute several averages of selected ERP signals as follows:

1. Trials 1 − 6, 7 − 12, 13 − 18, and 19 − 24.

2. Trials 1 − 8, 9 − 16, and 17 − 24.

3. Trials 1 − 12 and 13 − 24.

4. Trials 1 − 24.

For the case with the trials 1−6, plot each of the signals used as well as the result of averaging
using subplots; for the remaining cases, plot only the results of averaging. For all cases, compute
the SNR and Euclidean distance values as given above.

Prepare a table of the various SNR and the Euclidean distance values obtained along with the
corresponding signals (trials) used and the number of signals averaged (M). Analyze the results
and discuss your findings.

4.5 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
sum, sqrt

Reference: 1. M. V. Kamath, G. Tougas, S. Hollerbach, R. Premji, D. Fitzpatrick, G. Shine,
and A. R. M. Upton, “Estimation of habituation and signal-to-noise ratio of cortical evoked poten-
tials to oesophageal electrical and mechanical stimulation,” Medical and Biological Engineering
and Computing, 35:343-347, 1997.
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5 Laboratory Exercise: Frequency-domain Analysis of Biomedi-
cal Signals

5.1 Objectives

• To study methods for frequency-domain analysis of biomedical signals.

• To study the frequency content of ECG, EEG, EMG, and PCG signals.

5.2 Background

In this laboratory exercise, you will obtain estimates of the power spectral density (PSD) of various
biomedical signals, including the ECG, EEG, EMG, and PCG. In order to obtain an estimate of
the PSD of a signal, or a segment of interest of the signal, follow the procedure given below.

1. Select the segment of interest from the signal.

2. Subtract the mean of the segment; this will set the DC component in the PSD to zero.

3. Obtain the Fourier transform (FT) of the segment. The Matlab command for the compu-
tation of the FT is fft (representing the fast Fourier transform or FFT algorithm).

4. Obtain the squared magnitude of the FT.

5. Normalize the squared magnitude spectrum by dividing by its maximum.

6. Convert the result to dB: take the logarithm to base ten of the result above and multiply
by ten. This is an estimate of the PSD of the original signal in dB.

7. Select the first half of the PSD as above. Prepare the corresponding frequency axis in Hz,
spanning the range [0, fs/2], where fs is the sampling frequency of the signal.

8. Plot and analyze the result. Ensure that the axes are labeled in Hz and dB.

Note: In order to obtain a good estimate of the PSD of a process, several PSD estimates
obtained from several observations of the related signal should be averaged. Furthermore, the
signal should be multiplied with an appropriate window. However, windowing and averaging are
not included in this lab exercise. See Chapter 6 of the textbook for details.

5.3 Exercises to be worked by hand

1. Write an equation to define the FT X(f) of a continuous-time signal x(t).

2. Write an equation to define the discrete Fourier transform (DFT) X(k) of a discrete-time
signal x(n).

3. Explain how the frequency f (in Hertz) of a sample of the DFT is related to the index k of
the DFT and fs.
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4. The DFT of a discrete-time signal is obtained with N samples. Draw the frequency axis
indicating the sample number k = 1, 2, . . . , N , and label the points or parts corresponding
to DC, 0.5 fs, fs, the positive frequency range, and the negative frequency range.

5. Starting from the definition of the autocorrelation function (ACF) of a continuous-time
signal, prove that the Fourier transform of the ACF gives the PSD of the signal.

5.4 Function for PSD

Write a Matlab function to compute the PSD (in dB) of a given signal using the procedure
explained above.

5.5 PSD of ECG signals

Select one cardiac cycle from your noise-free ECG recording from Lab 1. Obtain and analyze its
PSD. Similarly, obtain the PSD of one cardiac cycle from your noisy ECG signal. Compare the
two PSDs and discuss their similarities and/or differences. Include in your report a plot of each
ECG segment and its PSD.

You may also use ecg_hfn.dat, ecg_hfn.m, ecg_lfn.dat, ecg_lfn.m, ECG3.dat, ECG4.dat,
ECG5.dat, ECG6.dat, and ECGS.m.

Repeat the experiment above with a larger number of samples in the FFT with zero padding
of the signal; study the details provided in Matlab for the command fft. Compare the PSDs and
describe your observations.

Repeat the experiment with a segment containing 20 cycles of the ECG in your noise-free
ECG recording; let the number of samples in the FFT be equal or to greater than the number of
samples in the signal segment. Compare the PSDs obtained with segments containing 20 cycles
and one cycle of the same signal, and describe your observations.

5.6 PSD of an EEG signal

Download one of the eeg1*.dat files; there are eight channels available. See also eeg1.m. The
sampling rate is fs = 100 Hz. Obtain and analyze the PSD of the entire EEG signal in the selected
channel. Include in your report a plot of the EEG signal selected and the corresponding PSD.

What is the dominant rhythm present in the signal?

5.7 PSD of EMG signals

From the EMG signal you acquired in Lab 1, select one segment for each level of muscular
contraction. Obtain and analyze the PSD of each segment. Include in your report plots of each
EMG signal segment and the corresponding PSD.

You may also use the data files
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EMGforce.txt, EMGforce2.txt, EM_EMG_SQUEEZE1.txt, and EM_EMG_SQUEEZE2.txt

as well as the program EMGforce.m. The sampling rate is 2000 Hz per channel and the EMG
sample values are in mV.

Are there any major differences between the PSDs at various levels of contraction? Is there a
trend in the PSDs against the level of contraction?

5.8 PSD of PCG signals

Using the program pcg3read.m, read the data file pec1.dat. The program gives a plot of three
channels: ECG, PCG, and carotid pulse. The sampling rate is fs = 1000 Hz per channel. Select
a systolic segment of the PCG signal and obtain its PSD. Select a diastolic segment and obtain
its PSD.

Repeat the above with the data in the file pec33.dat. This signal contains systolic murmur.
Use the dicrotic notch in the carotid pulse to determine the boundary between the systolic and
diastolic segments. Subtract 52 ms from the dicrotic notch position to obtain the initial time
instant of the diastolic segment; refer to Sections 2.3 and 4.11 of the textbook for discussions on
this topic. Obtain the PSDs of the systolic and diastolic segments.

In each case, include a plot of the PCG segment and its corresponding PSD in your report.
Discuss the results obtained.

5.9 Typical bandwidths of biomedical signals

Prepare a table giving the name of each signal analyzed in each experiment conducted and the
corresponding bandwidth (in Hz) containing most of the power in the signal. Explain how you
determined the bandwidth in each case. Discuss the results in your table.

5.10 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
ginput, fft, log10
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6 Laboratory Exercise: Filtering of the ECG for the Removal of
the 60 Hz Power-line Artifact

6.1 Objective

• Rejection of 60 Hz power-line interference from ECG signals.

6.2 Background

A major source of interference in ECG signals is the 60 Hz power-line frequency. The frequency
component at 60 Hz can be removed by using a notch filter, in which a zero is placed on the unit
circle at the location corresponding to 60 Hz.

The notch filter at 60 Hz can be derived as follows. The angular position of the required zero
on the unit circle is given as

θo = 2π
notch filter frequency fo

sampling frequency fs
. (10)

Complex zeros appear as conjugate pairs, i.e., if we place a zero at z1 = real + j imag, we have
its conjugate at z2 = real − j imag (see Figure 1).

Because z1 is on the unit circle, its magnitude is unity. The transfer function H(z) of the
notch filter is

H(z) =
(z − z1)(z − z2)

z2
= (1 − z1 z−1)(1 − z2 z−1). (11)

Refer to Section 3.6.3 of the textbook for details.

Note: The output of the filter y(n) can be found for an input x(n) by using the filter

command in Matlab. Pay attention to the significance of z, z−1, and the notation of the filter
coefficient array in Matlab! The command y = filter(b, a, x) filters the data in the array
x with the filter described by the arrays a and b to create the filtered vector y. The filter is a
“Direct Form II Transposed” implementation of the difference equation

y(n) = b(1)x(n)+b(2)x(n−1)+. . .+b(N+1)x(n−N)−a(2)y(n−1)−. . .−a(M+1)y(n−M). (12)

Observe that a(1) = 1. M and N give the order of the filter.

6.3 Exercises to be worked by hand

1. Derive the transfer function for a notch filter with the notch frequency of fo = 60 Hz and
the sampling rate of fs = 200 Hz. Include a scale factor such that the gain at DC is unity.
Derive the difference equation of the notch filter.

2. What is the effect of the filter designed as above if applied to your EMG signal from Lab 1
with fs = 2 kHz?

3. Draw the signal-flow diagram of the filter.
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Figure 1: Unit circle in the z plane with the zeros of a notch filter.

6.4 Notch filter for 60 Hz

1. Write a Matlab program to implement the notch filter designed as above.

2. Apply the filter to the signal in the data file ecg_60hz_200.dat. Plot the ECG signal before
and after filtering. Study the nature of the artifacts in the noisy signal and in the output
of the filter.

3. Apply the notch filter to a segment of one of your noisy ECG signals from Lab 1 with 3− 5
cardiac cycles. Plot the ECG signal before and after filtering. Study the nature of the
artifacts in the noisy signal and in the output of the filter.

4. Analyze the characteristics and the effects of the filter in the frequency domain by obtain-
ing and plotting the pole–zero diagram and the transfer function (magnitude and phase
response) of the filter, as well as the PSDs of the input and output signals.

6.5 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
filter, freqz, zplane, fft.
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7 Laboratory Exercise: Filtering of the ECG for the Removal of
Noise

7.1 Objectives

• Removal of high-frequency noise.

• Removal of low-frequency noise (baseline artifact).

• Rejection of power-line interference.

7.2 Background

ECG signals are often contaminated with a combination of high-frequency noise, low-frequency
noise (wandering baseline), and power-line frequency artifacts. High-frequency noise may be re-
moved by applying a lowpass filter, and low-frequency noise may be removed by using a highpass
filter. However, improper selection of the cutoff frequencies of the two filters could lead to dis-
tortions in the ECG signal, such as excessive smoothing or widening of the QRS complex, and
distortion of the normally isoelectric PQ and ST segments. Refer to Sections 3.5 and 3.6 of the
textbook for details.

The 60 Hz frequency component can be removed by using a notch filter, in which a zero is
placed on the unit circle at the location corresponding to 60 Hz. However, if the power-line signal
is not a perfect sinusoid, the signal could contain significant components at harmonics of 60 Hz.
A comb filter with zeros at each component to be rejected could then be used to remove the
artifact. Refer to Section 3.6.3 of the textbook for details.

7.3 Exercises to be worked by hand

1. A filter is specified to have a zero in the z domain at z = 1. Derive the impulse response
h1(n) and the transfer function H1(z) of the filter. Is this a lowpass, highpass, bandpass,
or band-reject filter?

2. Another filter is specified to have a double-zero (or two zeros) at z = −1. Derive the impulse
response h2(n) and the transfer function H2(z) of the filter. Is this a lowpass, highpass,
bandpass, or band-reject filter?

3. A researcher uses the two filters H1(z) and H2(z) as above in cascade (series). Derive
the impulse response h(n) and the transfer function H(z) of the combined filter. Is this a
lowpass, highpass, bandpass, or band-reject filter?

4. Draw the pole–zero plot for the combined filter.

5. Draw the signal-flow diagram for the combined filter.

7.4 Filtering ECG signals

Filter the noisy ECG signal that you acquired in the first lab as follows. You may also use
ecg_hfn.dat, ecg_hfn.m, ecg_lfn.dat, and ecg_lfn.m.
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1. Apply the von Hann lowpass filter as in Equation 3.99 in the textbook. Specify the filter in
terms of the a and b arrays via the filter command in Matlab.

2. Modify the derivative-based filter given by Equation 3.131 in the textbook for the removal
of low-frequency artifacts so that the gain at the maximum frequency present in the input
signal is unity. Use the filter command and apply the filter to your signal.

3. Apply the notch filter that you designed in Lab 6 for the rejection of 60 Hz to your signal.
Ensure that the filter is normalized to have unit gain at DC. Use the filter command.

4. Study the effect of each filter applied individually to the ECG signal, in the time domain
by plotting the entire duration of the signal (or a relevant portion of 10 − 15 seconds), as
well as by plotting a part of the signal with 2 − 3 cycles of the ECG. If you do not get
useful results with your ECG signal, you may test your methods using an ECG signal from
another group in your class. Comment upon and present an analysis of your results.

5. Study each filter in the frequency domain by obtaining its transfer function (magnitude
and phase), pole–zero plot, as well as the Fourier spectra of the input and output signals.
Comment upon and present an analysis of your results.

6. Apply all three filters to your ECG signal in series, and study the combined filter and the
result as specified above. Comment upon and present an analysis of your results.

Note: Obtain the transfer function (magnitude and phase) of the combination of the three

filters by using the freqz command. When three filters H1(z) = B1(z)
A1(z) , H2(z) = B2(z)

A2(z) , and

H3(z) = B3(z)
A3(z) are applied in series (cascade), the net transfer function is given by

H(z) = H1(z)H2(z)H3(z) =
B1(z)B2(z)B3(z)

A1(z)A2(z)A3(z)
;

that is, the transfer function of the combined filter is the product of the transfer functions of the
individual filters. Equivalently, if h1(n), h2(n), and h3(n) are the impulse responses of the three
filters, we have the impulse response of the combined filter given by

h(n) = h1(n) ∗ h2(n) ∗ h3(n);

that is, the impulse response of the combined filter is the convolution of the impulse responses of
the individual filters.

The coefficients of the polynomial B1(z)B2(z) are given by polynomial multiplication of B1(z)
and B2(z). The same result is achieved by convolution of the corresponding b arrays, which can
be done using the conv function in Matlab. You may use conv in series or in a nested call to
obtain the coefficients of B1(z)B2(z)B3(z), which will give the b array of the combined filter.

7.5 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
filter, freqz, zplane, fft, conv.
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8 Laboratory Exercise: Detection of the QRS and Parameteri-
zation of the ECG

8.1 Objectives

• To detect QRS complexes in ECG signals using the Pan–Tompkins algorithm.

• To measure parameters of the ECG for analysis of the heart rate and cardiac rhythm.

8.2 Background

The algorithm developed by Pan and Tompkins identifies QRS complexes based on analysis of
the slope, amplitude, and width of the QRS. The various stages of the algorithm are shown in
Figure 2.

Bandpass 
filter Differentiator

Squaring 
operation

Moving-window
      integrator

Figure 2: Block diagram of the Pan–Tompkins algorithm for the detection of QRS complexes in
ECG signals.

The bandpass filter, formed using lowpass and highpass filters, reduces noise in the ECG
signal. Noise such as muscle noise, 60 Hz interference, and baseline drift are removed by bandpass
filtering. The signal is then passed through a differentiator to provide a large response at the high
slopes that distinguish QRS complexes from low-frequency ECG components such as the P and
T waves.

The next operation is the squaring operation, which emphasizes the higher values expected
due to QRS complexes and suppresses smaller values related to the P and T waves, as well as noise
in the output of the preceding stage. The squared signal is then passed through a moving-window
integrator of window length N = 30 samples (for the sampling frequency of fs = 200 Hz). The
expected result is a single smooth peak related to the QRS complex for each ECG cycle. The
output of the moving-window integrator may be used to detect QRS complexes, measure RR
intervals, and determine the duration of the QRS complex (see Figure 3).

See Section 4.3.2 of the textbook for details.

8.3 Exercises to be worked by hand

1. A digital filter is specified in terms of its impulse response as

h1(n) = δ(n) + δ(n − 1) + δ(n − 2).

Derive its transfer function as well as the magnitude and phase parts of its frequency re-
sponse. Explain the nature and effects of the filter.
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Figure 3: The relationship of a QRS complex to the moving-window integrator output.
(a) Schematic ECG signal. (b) Output of the moving-window integrator. QS: QRS complex
width. W: width of the integrator window, given as N/fs s.

2. Another digital filter is specified in terms of its impulse response as

h2(n) = δ(n) − δ(n − 1).

Derive its transfer function as well as the magnitude and phase parts of its frequency re-
sponse. Explain the nature and effects of the filter.

3. The two filters given above are used in series to filter a signal. Derive and plot the impulse
response of the combined filter.

Derive the transfer function as well as the magnitude and phase parts of the frequency
response of the combined filter. Explain the nature and effects of the combined filter.

8.4 Detection of the QRS wave

1. Develop a Matlab program to perform the various filtering procedures that compose the
Pan–Tompkins algorithm. Use the filter command for each step; see Section 4.3.2 of the
textbook. Process each of the three ECG signals that you acquired in Lab 1 using your
program. Prepare plots of the signal being processed over the full duration (or a relevant
portion of about 10 − 15 seconds) and over two cardiac cycles, before and after each stage
of the Pan–Tompkins method.

You may also use ECG3.dat, ECG4.dat, ECG5.dat, ECG6.dat, and ECGS.m.

2. Plot the pole–zero diagram and the frequency response (magnitude and phase) of each of the
initial lowpass, highpass, and the combined bandpass filters, and also the derivative-based
and integrating filters. Study the plots and describe the characteristics as well as the effects
of each stage of the QRS-detection algorithm.
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3. Implement a thresholding procedure including a blanking interval for the detection of QRS
complexes from the output of the Pan–Tompkins algorithm. Develop Matlab code to use the
output of the Pan–Tompkins algorithm to detect QRS complexes. Mark the detected peak
locations on the plots of the output of the integrator and also the corresponding original
ECG signal, including a correction factor for the delays introduced by the filters.

4. Include steps in your program to compute automatically the following parameters for each
ECG signal:

(a) Total number of beats detected in each signal and the heart rate in beats per minute.

(b) Average RR interval and standard deviation of RR intervals of each signal (in ms).

(c) Average QRS width computed over all the beats in each signal (in ms).

Verify your results by visual comparison of the outputs of your program with the original
signals. Determine the number of missed beats or incorrectly detected beats, if any, in each
signal. Tabulate and analyze the results for your ECG signals.

Note: The amplitude of an ECG signal may start with a value other than zero. As a conse-
quence, the differentiator in the Pan–Tompkins algorithm will amplify the initial step, possibly
resulting in an erroneous beat detection. In order to prevent this problem, subtract the value of
the first sample of the ECG signal from the entire ECG prior to processing by the Pan–Tompkins
algorithm.

8.5 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
filter, freqz, zplane.
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9 Laboratory Exercise: Detection of Spike-and-wave Complexes
in EEG Signals

9.1 Objectives

• Detection of spike-and-wave complexes in EEG signals using template matching.

• Design and implementation of a matched filter to detect spike-and-wave complexes in EEG
signals.

9.2 Background

A spike-and-wave complex (SWC) is a well-defined event in an EEG signal. The complex is
composed of a sharp spike followed by a wave with a frequency of about 3 Hz; the wave may
contain a half period or a full period of an almost-sinusoidal pattern. One may, therefore, extract
a copy of an SWC from an EEG channel and use it for template matching. By computing the
cross-correlation function (CCF), the template may be correlated with the same EEG signal from
which it was extracted to detect similar events that appear at other instants of time, or with the
EEG from another channel of the same subject or even a different subject to search for similar
patterns or events.

Another approach to solve this problem is to design a matched filter to facilitate the detection
of SWCs in EEG signals. When a sample observation of a typical version of a signal event is
available (a template of an SWC in the present exercise), it becomes possible to design a filter
that is matched to the characteristics of the event. If an observed signal is expected to contain
repetitions of the event with almost the same characteristics, the signal may be passed through
the matched filter. The output should provide peaks at the time instants of the occurrences of the
event. Matched filters are designed to perform correlation between the input signal and the signal
template. The output of the matched filter may be thresholded to detect peaks that correspond
to SWCs in the given EEG record.

See Sections 4.4 and 4.6 of the textbook for details.

9.3 Template matching

Copy the files eeg2*.dat and eeg2.m. The signals are sampled at the rate of 100 Hz. Select an
EEG signal and a template corresponding to an SWC. Write your own Matlab code to compute
the CCF between the template and the signal. Apply a peak-detection algorithm to locate the
peaks in the result. Mark the locations of the corresponding SWC complexes in the EEG signal.
Apply time-delay corrections as required and explain.

Plot the EEG signal and the CCF, including marks to identify the peaks in the CCF and the
SWC complexes detected in the EEG signal.

Apply the same template and procedures to two other EEG channels and analyze the results.
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9.4 Matched filtering

Derive the impulse response of the matched filter from the template selected in the preceding
experiment. Plot the template and the impulse response of the matched filter on the same figure
and explain the relationships between the two.

Perform the matched filtering operation on the same EEG signals as in the preceding exper-
iment by using the filter command in MATLAB. Process the output of the matched filter to
detect peaks and mark SWCs in the original EEG signals corresponding to the peaks detected in
the matched filter output. Take into account the delay in the output of the matched filter when
identifying the onset of SWCs in the EEG signals.

Apply the same matched filter and procedures to two other EEG channels and analyze the
results.

Discuss the similarities and differences between template matching and matched filtering and
the results provided by the two methods.
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10 Laboratory Exercise: Frequency-domain Analysis of Heart
Sounds

10.1 Objectives

• Segmentation of phonocardiographic (PCG) signals.

• Computation of an averaged power spectral density (PSD) of a segment of a PCG signal.

• Parametric characterization of PSDs.

• Auditory analysis of heart sounds.

10.2 Background

The PCG is a recording of the heart sounds. Some of the important features of the PCG include:
the frequency content of murmurs and heart sounds, the maximum intensities of the heart sounds,
the intensity patterns of murmurs, and the timing sequence of the heart sounds and murmurs.

Heart sounds are caused by the acceleration or deceleration of blood in the heart’s chambers.
There are two major heart sounds that occur during a cardiac cycle. The first heart sound
(S1) is due to ventricular contraction, and occurs at the same time as the QRS complex in the
ECG signal. (See Section 1.2.9 of the textbook.) The frequency content of S1 is limited to a
low-frequency band of about 10 − 120 Hz.

The closure of the semilunar (pulmonary and aortic) valves gives rise to the second heart
sound (S2). S2 occurs at about the end of the T wave in the ECG. The frequency content of S2
is usually higher than that of S1, in the range of about 10 − 200 Hz.

The intervals between S1 and S2 of a cardiac cycle, and between S2 of a cycle and S1 of the
next cycle (corresponding to ventricular systole and diastole, respectively) are normally silent.
Murmurs, caused by certain cardiovascular defects and diseases, may occur in these intervals.
Murmurs are high-frequency noise-like vibrations that arise when the velocity of blood becomes
high due to an irregularity, orifice, or defect through which the blood flows.

The PSD of a signal is given by the squared magnitude of the Fourier transform (FT) of the
signal. In the case of PCGs, the random nature of the vibrations and the associated signals causes
variation in the frequency content from one heart beat (cardiac cycle) to another. Therefore, the
PSD computed using one PCG cycle or segment will not provide an accurate representation of
the PSD of the signal. In order to overcome this limitation, we could extract PCG segments from
several cardiac cycles using the ECG as a reference (trigger) signal, compute the PSD of each
segment, and average the PSDs over several cardiac cycles. In such a procedure, each segment
should correspond to the same phase or period of the cardiac cycle. The procedure may be applied
to derive separate PSDs for the different distinct parts of the PCG signal, such as S1, the systolic
segment after S1, S2, and the diastolic segment after S2 (until the next S1). The averaged PSDs
may then be characterized in terms of quantitative features, such as moments. See Sections 6.3.5
and 6.5 of the textbook.
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10.3 Spectral analysis of heart sounds

1. Copy the files pec1.dat, pec33.dat, pec41.dat, pec42.dat, pec52.dat,

and pec_sound.m.

Each .dat file contains sampled values of the ECG, PCG, and carotid pulse signals of a
subject. The sampling rate per channel is fs = 1, 000 Hz. Use the program pec_sound.m

provided to read, separate, and plot the data, as well as to listen to the PCG signals. Some
of the data files have artifacts at the beginning and/or ending of the recording session: delete
such portions in your program.

The files pec1 and pec52 contain signals from normal subjects. The files pec33 and pec42

contain signals from two subjects with ventricular septal defect (a hole between the two
ventricles, causing blood to leak from the left ventricle to the right ventricle during systole),
causing systolic murmur in the PCG. The file pec41 contains signals from a subject with
aortic stenosis (stiffened leaflets of the aortic valve causing incomplete opening of the valve
and constrained ejection of blood into the aorta during ventricular systole), causing systolic
murmur in the PCG.

2. For each case, apply the Pan–Tompkins algorithm (that you developed in an earlier lab
exercise) to the ECG signal and detect the QRS complexes. Note that the Pan–Tompkins
algorithm is designed for signals sampled at 200 Hz. In order to apply the algorithm to
the ECG signal in the present exercise, prefilter only the ECG channel using a second-order
Butterworth lowpass filter with a cutoff frequency of 60 Hz and downsample by a factor
of five before applying the Pan–Tompkins algorithm. You may also have to modify your
threshold parameters for the detection of the QRS complexes. Transfer the QRS point
detected for each beat to the beginning of the corresponding S1 point in the PCG channel
after incorporating the required delay and scale factors.

3. Segment the systolic portions of the PCG signal by selecting a window of duration 300 −

350 ms starting from the beginning of each QRS complex. Ensure that the window that you
define for each subject includes the beginning of S1 and systolic murmur (if present), but not
S2. (You may determine this duration by visual inspection of each signal. See Sections 4.3.3
and 4.10 of the textbook for methods to detect the beginning of S2 using the carotid pulse.)
Subtract the mean of each signal segment and compute the PSD of each segment, given as
the square of the absolute value of the FT of the signal segment, divided by the number of
samples in the FT array. Obtain the averaged PSD of the systolic portions of each PCG
signal, using as many cardiac cycles as possible in a synchronized-averaging procedure (see
Section 6.3.5 of the textbook).

4. For each PCG signal, prepare a plot of one sample systolic segment, a plot of the PSD of
the single systolic segment, and a plot of the average PSD computed using as many cardiac
cycles as available. Ensure that all of your plots have the time axis labeled in seconds, the
frequency axis in Hertz, etc., as applicable. Provide an interpretation of your results.

5. Compute the mean frequency of the averaged PSD for each case (see Equation 6.30 of the
textbook). Use only one half of the PSD (for positive frequency only) to compute the mean
frequency. Estimate the approximate bandwidth of each PCG signal. Prepare a table of
the mean frequency and the approximate bandwidth for each of the five signals provided.
Give the appropriate units for the parameters that you compute from the PSDs. Analyze
the parameters and discuss your findings.
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6. Listen to each PCG signal (or part thereof) and describe your observations in your report.
Relate your auditory analysis to the PSDs

For playback and auditory analysis of heart sounds, use the sound command in Matlab. The
sampling rate of the signals provided to you is 1 kHz. Time-scale (oversample or interpolate)
the given PCG signals to 8 kHz by using the interp command. Some of the data files have
artifacts at the beginning and/or ending of the recording session: delete such portions in
your program. (A loud and strange sound could affect your perception of the immediately
following sounds.)

If there is a problem with the sound command in Matlab on the computers in the lab, refer
to the commands provided in pec_sound.m to convert the PCG data array into a .au audio
file. You may also convert the PCG signal into a .wav file using the command wavwrite.
You may then listen to the .au or .wav files using audio tools and headphones.
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11 Laboratory Exercise: Morphological Analysis and Pattern
Classification of ECG Signals

11.1 Objectives

• To detect, segment, and extract discriminative features from QRS complexes in ECG signals
for the characterization of normal beats and premature ventricular contractions (PVCs).

• To classify ECG waveforms into two groups: normal and PVC.

11.2 Background

Rhythm monitoring of cardiac patients is one of the vital functions of a coronary care unit. One
particular type of cardiac abnormality to be monitored is a PVC. A PVC, which is an aberrantly
conducted beat triggered by an ectopic impulse-generating focus, is characterized by a shorter
preceding RR interval (hence called premature), and a bizarre QRS complex. The shape of the
QRS complex of a PVC depends upon the location of the ectopic focus and the path of conduction
taken by the impulse. This makes morphological analysis of the PVC a challenge, because a PVC
does not possess any specific waveform. In addition, there could be several ectopic foci generating
different types of PVCs in a given ECG signal.

The detection and identification of PVCs requires information regarding both the rhythm and
the morphology of QRS complexes. Three features of interest for each beat are

• the preceding RR interval,

• the QRST area (QRSTA), and

• the correlation coefficient with the template of a normal beat (CC).

In order to measure the RR interval, the QRS complexes in the ECG signal have to be detected
first. The Pan–Tompkins method that you implemented in an earlier laboratory exercise could be
used for this purpose. The RR interval is given by the time interval between the detected marker
point for the present QRS complex and the corresponding point for the preceding QRS complex.
The RR interval is a useful measure to analyze the cardiac rhythm represented by the given ECG
signal.

The QRST area may be derived by selecting a segment of the ECG including the QRS complex
and the following T wave (about 300 ms in duration) using the peak detected in the output of the
Pan–Tompkins method for reference, subtracting the mean, rectifying the result, and computing
the area under the resulting curve. See Figure 5.3 in the textbook.

In order to compute CC, we need to select a normal beat to serve as the template. Then, the
normalized dot product between the template and the corresponding portion of the current beat
could be computed to obtain CC, as follows:

CC =

∑N−1
n=0 [x(n) − min(x)] [y(n) − min(y)]

√

∑N−1
n=0 [x(n) − min(x)]2

∑N−1
n=0 [y(n) − min(y)]2

. (13)
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Here, x(n) is the template; y(n) is the ECG beat being analyzed; min(x) and min(y) are the
minimum values of x(n) and y(n), respectively; and N is the duration (number of samples) of the
template and the beat being analyzed.

Ectopic beats (PVCs) are expected to be characterized by lower CC, higher QRSTA, and
lower RR than normal beats.

11.3 Analysis and classification of ECG signals

Copy the data file ecgpvcs.mat and the program pvcs.m. Use only the first signal (ecg1) in the
file ecgpvcs.mat.

Develop Matlab code to implement the following pattern classification procedure. See Chapter
9 of the textbook for related details and examples.

A. Training:

1. Use the first 40% of the given ECG signal for the training step. Apply the Pan–Tompkins
method and detect the beats in the signal.

2. Segment each cardiac cycle (QRS-T complex) by taking a few samples before and a few
samples after the corresponding marker point detected in the output of the Pan–Tompkins
method. Use a total duration of about 300 ms for each beat. The P wave need not
be considered in the present exercise. Prepare a plot of the entire ECG signal with the
segmentation points marked for each beat in the signal. See Figure 5.11 of the textbook.

3. Prepare an array with one line per beat in the training signal, giving the ECG beat number;
the type of the beat as normal (0) or PVC (1); QRSTA; and CC. In this step, you need to
determine, by visual inspection, the type of each beat in the training part of the signal. Save
this array for use in the testing step. Prepare a table of the mean and standard deviation of
QRSTA and CC computed separately for the normal beats and PVCs in the training part
of the ECG signal.

4. Prepare a plot of the training portion of the given signal, with each beat labeled as ‘o’ or
‘x’, representing a normal beat or PVC, respectively.

5. Prepare a scatter plot of CC versus QRSTA for all of the beats detected. Mark the plot
with ‘o’ or ‘x’ for each normal beat or PVC, respectively. See Section 9.11 of the textbook.

B. Testing:

1. Apply the QRS detection and parameterization procedures as above to the remaining
part of the ECG signal (testing part). For each beat detected, form a feature vector as
[QRSTA,CC]. Prepare a table of the mean and standard deviation of QRSTA and CC
computed separately for the normal beats and PVCs in the testing part of the ECG signal.
Prepare a scatter plot of CC versus QRSTA for all of the beats detected in the testing part.
Mark the plot with ‘o’ or ‘x’ for each normal beat or PVC, respectively.
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2. For each beat, find the k nearest neighbors (k−NN) in the training set using the feature
vector [QRSTA,CC] and the Euclidean distance measure, and classify the beat as normal
or PVC using the k−NN rule with k = 1. (See Section 9.4.4 of the textbook.)

Repeat the procedure with k = 3.

3. Prepare a plot of the testing portion of the given signal, with each beat labeled as ‘o’ or ‘x’,
representing a normal beat or PVC, respectively, as determined by the k−NN rule in your
program.

4. Check the results of your classification procedure, and compute the accuracy of classifi-
cation, including measures of true-positive, false-positive, true-negative, and false-negative
fractions. Note also the number of beats not detected and false detections of beats (if any)
by your program. Prepare a summary of your results in a table.

Note: The ranges of the values of CC and QRSTA could be substantially different, which
creates difficulties in k−NN analysis. To overcome this, normalize the QRSTA values in the
training set and also in the testing set by dividing by the maximum value of the feature in the
training set.

See Sections 9.4.4 and 9.11 of the textbook for related material.

11.4 Matlab commands to learn

Use the help command in Matlab and learn the following commands:
filter, freqz, zplane.
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12 Project: Wiener Filtering of ECG Signals

12.1 Objectives

• Filter and remove artifacts in ECG signals.

• Design a Wiener filter using the autocorrelation function (ACF) and power spectral density
(PSD) functions of ECG signals and noise.

• Compare the performance of the Wiener filter with other time-domain and frequency-domain
filters.

12.2 Specific tasks

1. Get at least three ECG signals: one with a substantial amount of high-frequency noise, one
with low-frequency noise, and one that is relatively free of noise. You may use your own
ECG signal files from Lab 1 or the data files

ecg_hfn.dat, ecg_hfn.m, ecg_lfn.dat, ecg_lfn.m, pec*.dat, and plotpec.m.

The sampling rate is 1000 Hz or 200 Hz: please check each case carefully. Resample the
signals to the sampling rate desired for your project if required.

2. Implement one time-domain and one frequency-domain filtering method (see Chapter 3 of
the textbook) to remove high-frequency and low-frequency artifacts in the signals.

3. Implement the Wiener filter (see Section 3.8 of the textbook). For this purpose, estimate
the ACF and PSD of noise-free ECG signals and the noise found in the examples available
by averaging over multiple observations of the processes and fitting appropriate functions.
Implement the Wiener filter in the frequency domain as in Equation 3.185 in the textbook.

4. Implement the Wiener filter in the time domain by obtaining the inverse Fourier transform
of the transfer function from the preceding step, truncation as needed, and using the Matlab
filter command.

5. Compare the results obtained using the various filters in your study.
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13 Project ECG-A: Morphological Analysis and Pattern Classi-
fication of ECG Signals

13.1 Objectives

• Filter and remove artifacts in ECG signals.

• Detect, segment, and extract discriminative features from QRS complexes in ECG signals
for the characterization of normal beats and premature ventricular contractions (PVCs).

• Classify ECG beats (waveforms) into two groups: normal and PVC.

13.2 Specific tasks

1. Get an ECG signal with PVCs. You may use the data file ecgpvcs.mat and the program
pvcs.m. Use only the first signal (ecg1) in the file ecgpvcs.mat. The sampling rate is
200 Hz.

2. Implement two filtering methods (see Chapter 3 of the textbook) — one in the time domain
and another in the frequency domain — to remove high-frequency and low-frequency arti-
facts in the signal. You may use the signals ecg_hfn.dat and ecg_lfn.dat to test your
programs for noise removal; see the corresponding .m files.

3. Implement the Pan–Tompkins method to detect QRS complexes in the ECG signal; see
Section 4.3.2 of the textbook.

4. Implement methods to derive at least two features to characterize each segmented ECG
beat, including the QRST area and the correlation coefficient with the template of a normal
beat selected from the same ECG signal; see Chapter 5 of the textbook.

5. Implement the k-nearest neighbor method to classify each beat as a normal or a PVC (see
Chapter 9 of the textbook). Use features from the first 10−20% of the signal as the training
or reference set for the classifier and the remaining signal to test the classifier. Check the
results of your classification procedure and compute the accuracy of classification, including
measures of true-positive, false-positive, true-negative, and false-negative fractions. Note
also the number of beats not detected and false detections of beats (if any) by your program.

6. Prepare a summary of your results in a table.
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14 Project ECG-B: Morphological Analysis and Pattern Classi-
fication of ECG Signals

14.1 Objectives

• Filter and remove artifacts in ECG signals.

• Detect, segment, and extract discriminative features from QRS complexes in ECG signals
for the characterization of normal beats and premature ventricular contractions (PVCs).

• Classify ECG beats (waveforms) into two groups: normal and PVC.

14.2 Specific tasks

1. Get an ECG signal with PVCs. You may use the data file ecgpvcs.mat and the program
pvcs.m. Use only the first signal (ecg1) in the file ecgpvcs.mat. The sampling rate is
200 Hz.

2. Implement two filtering methods (see Chapter 3 of the textbook) — one in the time domain
and another in the frequency domain — to remove high-frequency and low-frequency arti-
facts in the signal. You may use the signals ecg_hfn.dat and ecg_lfn.dat to test your
programs for noise removal; see the corresponding .m files.

3. Implement the method of Balda et al. to detect QRS complexes in the ECG signal; see
Section 4.3.1 of the textbook.

4. Implement methods to derive at least two features to characterize each segmented ECG
beat, including the form factor and the QRS width; see Chapter 5 of the textbook.

5. Implement a linear discriminant function to classify each beat as a normal or a PVC (see
Chapter 9). Use features from the first 25 − 30% of the signal as the training or reference
set for the classifier and the remaining signal to test the classifier. Check the results of
your classification procedure and compute the accuracy of classification, including measures
of true-positive, false-positive, true-negative, and false-negative fractions. Note also the
number of beats not detected and false detections of beats (if any) by your program.

6. Prepare a summary of your results in a table.
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15 Project EMG-A: Analysis of the Relationship Between Pa-
rameters of the EMG Signal and Muscular Force

15.1 Objectives

• Characterize the level of activity in EMG signals.

• Analyze the relationship between parameters of the EMG signal and muscular force.

15.2 Specific tasks

1. Get EMG signals related to various levels of muscular activity or force. You may use the
data files

EMGforce.txt, EMGforce2.txt, EM_EMG_SQUEEZE1.txt, and EM_EMG_SQUEEZE2.txt

as well as the program EMGforce.m. The sampling rate is 2000 Hz per channel and the
EMG sample values are in mV.

2. Normalize the force signal such that the minimum value is zero and the maximum value
(corresponding to the maximum voluntary contraction or MVC) is 100. Filter the EMG
signal to remove noise and artifacts (experiment with Butterworth lowpass and highpass
filters with various bandwidths). Plot the EMG signal (in mV) and normalized force (in
%MVC) against the time axis.

3. Develop methods for automatic identification of portions (segments) corresponding to each
level of contraction within which the force remains close to the corresponding peak values.
Explain your algorithm in your report.

4. For each segment of the EMG signal identified as above, compute at least four suitable
parameters (see Chapters 3, 5, and 6 of the textbook). Ensure that your list of EMG
features includes the following: RMS value, fractal dimension using Higuchi’s method, and
mean and median frequencies via spectral analysis. Compute also the average force (in
%MVC) for each segment.

5. Plot the values of the various parameters versus force in %MVC. Label the axes with the
appropriate units. Analyze the results in terms of statistical variation of the parameters in
relation to force.

6. Using the polyfit function in Matlab, obtain a straight-line (linear) fit to represent the
variation of each EMG parameter versus force. Use polyval to evaluate the values of the
dependent variable given by the model for the available values of the independent variable.
Superimpose the linear models (straight-line fits) obtained on the plots of the parameters
in the preceding step. Analyze the results.

7. Compute the correlation coefficient, r, with r2 given by the formula in Equation 5.28 in
the textbook. Using r, analyze the goodness of fit for each parameter and discuss the
appropriateness of the linear model. See

http://mathworld.wolfram.com/CorrelationCoefficient.html

for details on linear least-squares fitting and the correlation coefficient. See Chapter 5 of
the textbook for related examples.
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8. Tabulate the parameters of the linear model and r for each of the EMG parameters. Analyze
the results and describe your findings.

9. Perform all of the above steps with each of the four EMG signals provided as above. Study
the effects of filtering the EMG signals on the features extracted and their relationships
with force. Analyze and compare the results.
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16 Project EMG-B: Analysis of the Relationship Between Pa-
rameters of the EMG Signal and Muscular Force

16.1 Objectives

• Characterize the level of activity in EMG signals.

• Analyze the relationship between parameters of the EMG signal and muscular force.

16.2 Specific tasks

1. Get EMG signals related to various levels of muscular activity or force. You may use the
data files

EMGforce.txt, EMGforce2.txt, EM_EMG_SQUEEZE1.txt, and EM_EMG_SQUEEZE2.txt

as well as the program EMGforce.m. The sampling rate is 2000 Hz per channel and the
EMG sample values are in mV.

2. Normalize the force signal such that the minimum value is zero and the maximum value
(corresponding to the maximum voluntary contraction or MVC) is 100. Filter the EMG
signal to remove noise and artifacts (experiment with Butterworth lowpass and highpass
filters with various bandwidths). Plot the EMG signal (in mV) and normalized force (in
%MVC) against the time axis.

3. Develop methods for automatic identification of portions (segments) corresponding to each
level of contraction within which the force remains close to the corresponding peak values.
Explain your algorithm in your report.

4. For each segment of the EMG signal identified as above, compute at least four suitable
parameters (see Chapters 3, 5, and 6 of the textbook). Ensure that your list of EMG
features includes the following: mean-squared value, fractal dimension using power spectral
analysis (see Section 6.6 of the textbook), zero-crossing rate, and turns count. Compute
also the average force (in %MVC) for each segment.

5. Plot the values of the various parameters versus force in %MVC. Label the axes with the
appropriate units. Analyze the results in terms of statistical variation of the parameters in
relation to force.

6. Using the polyfit function in Matlab, obtain a straight-line (linear) fit to represent the
variation of each EMG parameter versus force. Use polyval to evaluate the values of the
dependent variable given by the model for the available values of the independent variable.
Superimpose the linear models (straight-line fits) obtained on the plots of the parameters
in the preceding step. Analyze the results.

7. Compute the correlation coefficient, r, with r2 given by the formula in Equation 5.28 in
the textbook. Using r, analyze the goodness of fit for each parameter and discuss the
appropriateness of the linear model. See

http://mathworld.wolfram.com/CorrelationCoefficient.html

for details on linear least-squares fitting and the correlation coefficient. See Chapter 5 of
the textbook for related examples.
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8. Tabulate the parameters of the linear model and r for each of the EMG parameters. Analyze
the results and describe your findings.

9. Perform all of the above steps with each of the four EMG signals provided as above. Study
the effects of filtering the EMG signals on the features extracted and their relationships
with force. Analyze and compare the results.
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17 Project: Frequency-domain Analysis of Heart Sounds

17.1 Objectives

• Segmentation of phonocardiographic (PCG) signals using the ECG and carotid pulse as
references.

• Computation of averaged power spectral densities (PSDs) of the systolic and diastolic seg-
ments of a PCG signal.

• Parametric representation of PCG signals.

• Auditory analysis and classification of heart sounds.

17.2 Specific tasks

1. Get a few PCG signals of normal subjects and patients with murmurs. You may use the
files pec1.dat, pec33.dat, pec41.dat, pec42.dat, pec52.dat, and pec_sound.m.

Each .dat file contains sampled values of the ECG, PCG, and carotid pulse signals of a
subject. The sampling rate per channel is fs = 1, 000 Hz. Use the program pec_sound.m

provided to read, separate, and plot the data, as well as to listen to the PCG signals. Some
of the data files have artifacts at the beginning and/or ending of the recording session: delete
such portions through your program.

The files pec1 and pec52 contain signals from normal subjects. The files pec33 and pec42

contain signals from two subjects with ventricular septal defect (a hole between the two
ventricles, causing blood to leak from the left ventricle to the right ventricle during systole),
causing systolic murmur in the PCG. The file pec41 contains signals from a subject with
aortic stenosis (stiffened leaflets of the aortic valve causing incomplete opening of the valve
and constrained ejection of blood into the aorta during ventricular systole), causing systolic
murmur in the PCG.

2. Detect the QRS complexes in the ECG signals by applying the method of Balda et al. (see
Section 4.3.1 of the textbook). Note that the algorithm is designed for signals sampled at
200 Hz. In order to apply the algorithm to the ECG signal in the pec signals, prefilter only
the ECG channel using a suitable Butterworth lowpass filter and downsample by a factor
of five before applying the algorithm. Transfer the QRS point detected for each beat to
the beginning of the corresponding S1 point in the PCG channel after incorporating the
required correction or scaling factors.

3. Detect the dicrotic notch in the carotid pulse signal by implementing the method described
in Section 4.3.3 of the textbook.

4. Segment the systolic and diastolic portions of the PCG signal by using the related QRS
complex and dicrotic notch positions detected in the preceding steps; see Section 4.10 of the
textbook.

5. Obtain the averaged PSDs of the systolic and diastolic portions of each PCG signal, using
as many cardiac cycles as possible in a synchronized-averaging procedure (see Chapter 6
of the textbook). Plot and compare the PSD of an individual systolic or diastolic segment
with the average PSD of several systolic or diastolic segments.
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6. Compute the mean frequencies of the averaged systolic and diastolic PSDs for each case (see
Chapter 6 of the textbook). Estimate the approximate bandwidth of each PCG signal as
in the corresponding averaged systolic and diastolic PSDs. Explore the design of a spectral
ratio as in Equation 6.41 in the textbook to distinguish between normal PCG signals and
those with murmurs (define suitable values for the frequency limits f1, f2, and f3). Prepare
a table of the frequency-domain parameters as above for each of the five signals provided.
Give the appropriate units for the parameters that you compute from the PSDs. Analyze
the parameters and discuss your findings.

7. Listen to each PCG signal and describe your observations in your report. Relate your
auditory analysis to the PSDs.

The sampling rate of the signals provided to you is 1 kHz. Time-scale (oversample or
interpolate) the given PCG signals to 8 kHz by using the interp command. Some of the
data files have artifacts at the beginning and/or ending of the recording session: delete
such portions in your program. (A loud and strange sound could affect your perception of
the immediately following sounds.) Refer to the commands provided in pec_sound.m to
convert the PCG data array into a .au audio file. You may also convert the PCG signal
into a .wav file using the command wavwrite. You may then listen to the .au or .wav files
using suitable audio tools.
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18 Project VAG-A: Analysis and Classification of VAG Signals

18.1 Objectives

• Derive parameters to characterize the level of activity and complexity in VAG signals.

• Use the derived parameters for screening of VAG signals (classification as normal or abnor-
mal).

• Study the effects of prefiltering or bandwidth selection on the features and classification
accuracy.

18.2 Specific tasks

1. Get VAG signals of a number of normal subjects and patients with knee-joint pathology
from the file VAG_Signals89Share.zip. The sampling rate is 2, 000 Hz.

2. Filter the VAG signals to remove noise and artifacts (experiment with Butterworth lowpass
and highpass filters with various bandwidths).

3. Develop methods for automatic identification of portions (segments) of each signal that are
quasistationary. You may use statistical or spectral measures. Explain your algorithm in
your report.

4. For each segment of the VAG signal identified as above, compute at least four suitable
parameters (see Chapters 5 and 6 of the textbook). Ensure that your list of features includes
the following: mean-squared value, fractal dimension using Higuchi’s method, and mean and
median frequencies via spectral analysis.

5. Tabulate the parameters and their statistics for the groups of normal and abnormal VAG
signals. Analyze the results and describe your findings.

6. Split the available data into two parts: one for training and another for testing a classifier.
Develop a linear discriminant classifier using the parameters of the training set to classify
the signals as normal or abnormal. Evaluate the classifier in terms of the true-positive, true-
negative, false-positive, and false-negative rates as well as the overall classification accuracy.

7. Test the classifier with the test part of the dataset and evaluate the results as above.
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19 Project VAG-B: Analysis and Classification of VAG Signals

19.1 Objectives

• Derive parameters to characterize the level of activity and complexity in VAG signals.

• Use the derived parameters for screening of VAG signals (classification as normal or abnor-
mal).

• Study the effects of prefiltering or bandwidth selection on the features and classification
accuracy.

19.2 Specific tasks

1. Get VAG signals of a number of normal subjects and patients with knee-joint pathology
from the file VAG_Signals89Share.zip. The sampling rate is 2, 000 Hz.

2. Filter the VAG signals to remove noise and artifacts (experiment with Butterworth lowpass
and highpass filters with various bandwidths).

3. Develop methods for automatic identification of portions (segments) of each signal that are
quasistationary. You may use statistical or spectral measures. Explain your algorithm in
your report.

4. For each segment of the VAG signal identified as above, compute at least four suitable
parameters (see Chapters 5 and 6 of the textbook). Ensure that your list of features includes
the following: form factor, fractal dimension via power spectral analysis, and turns count.

5. Tabulate the parameters and their statistics for the groups of normal and abnormal VAG
signals. Analyze the results and describe your findings.

6. Split the available data into two parts: one for training and another for testing a classifier.
Develop a k-nearest neighbor classifier (see Chapter 9 of the textbook) using the parameters
of the training set to classify the signals as normal or abnormal. Evaluate the classifier in
terms of the true-positive, true-negative, false-positive, and false-negative rates as well as
the overall classification accuracy.

7. Test the classifier with the test part of the dataset and evaluate the results as above.
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20 Project: Analysis of the Relationship Between Parameters of
the EEG Signal and Sleep Stage

20.1 Objectives

• Characterize the nature of activity in EEG signals.

• Analyze the relationship between parameters of the EEG signal and sleep stage.

20.2 Specific tasks

1. Get EEG signals related to various stages of sleep. You may use the data in SleepEEGdata.mat

and the program SleepEEGread.m. (Data courtesy of Dr. R. Agarwal [1].) The sampling
rate is 200 Hz.

2. Filter the EEG signal to remove noise and artifacts. Experiment with Butterworth lowpass
and highpass filters with various bandwidths. Evaluate the results in terms of the visual
appearance and Fourier power spectra of the signals before and after filtering as well as the
effects of filtering on sleep stage classification accuracy.

3. For each segment of the EEG signal provided, compute at least three suitable parameters
(see Chapters 5 and 6 of the textbook). Ensure that your list of features includes the
following: form factor and two spectral ratios as in Equation 6.41 in the textbook (define
suitable values for the frequency limits f1, f2, and f3).

4. Plot the values of the various parameters versus sleep stage. Analyze the results in terms of
the variation of the parameters in relation to sleep stage. See Section 6.7 of the textbook.

5. Develop a pattern recognition or classification scheme (see Chapter 9 of the textbook) to
label each EEG segment automatically with a sleep stage. Use the first 200 epochs from
any one EEG channel to develop or train the scheme and the remaining epochs to test the
scheme. Use the sleep stage data provided to verify your results.

6. Perform all of the steps given above with any two EEG channels. Analyze and compare the
results.

Reference [1] R. Agarwal and J. Gotman. Computer-assisted sleep staging. IEEE Transactions
on Biomedical Engineering, 48(12):1412-1423, 2001.
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21 Preparation of Reports on Laboratory Exercises and Projects

21.1 Reports on laboratory exercises

Complete all exercises and report your findings appropriately, with the following observations:

• Plots, graphs: Use graphs to explain your results as necessary. You may plot more graphs
than indicated in the exercises in order to provide a good explanation of your results.
Always label the axes of your graphs and use appropriate axis-scale factors to facilitate
visualization of details of interest. If the units of a variable are not calibrated or unknown,
label the corresponding axis as “arbitrary units” or “AU.”

• Matlab code: Your code must be clear and properly documented, with names of variables
and functions that are appropriate for the specific exercise.

• Report: Your report must be a well-structured document in which the results obtained
in each experiment are introduced in the text (e.g., “Figure 4 shows the sampled signal
x(n)...”) and discussed as necessary.

21.2 Project reports

Your project report must include an introductory review of your chosen subject area and prob-
lem, complete technical details of the methods studied and implemented (equations, procedures,
and algorithms), illustrations of results, critical analysis and discussion of the results obtained,
and references. More attention should be paid to the signal processing and analysis techniques
studied than to the specific type of signal used or the application area of the project. Do not
include your computer code. See papers in the IEEE Transactions on Biomedical Engineer-
ing http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5672100 for examples of re-
search reports.

In a statement signed by each team member submitted with the report, you should specify how
the project workload was shared, in percentage, between the members of your group; for equal
assignment of marks, it is expected that each member has contributed equally to the project.

The recommended length of the report is eight pages in the IEEE Transactions on Biomedi-
cal Engineering format with two columns and single-spaced printing, including illustrations and
references. For assistance on preparing and formatting your report, see

http://www.ieee.org/publications_standards/publications/authors/authors_journals.html.

Meet regularly to discuss your project, present and discuss ongoing work and results, and
maintain progress in the project. Do not leave large portions of the project work for later parts
of the term!

21.3 Design your own project!

Projects must involve computer implementation (in Matlab or any other language of your choice)
of algorithms for digital signal processing and analysis, testing of the methods with real-life signals
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from any biomedical application area of your choice, and analysis of the results. The research,
programming, data analysis, and report for the project must all be conducted, performed, and
written by yourself (or in teams of two or three students each).

The algorithms you study and implement need not be original, but must be technically more
advanced and sophisticated than the laboratory exercises. You may select a few previously pub-
lished methods for filtering for the removal of artifacts, recognition or detection of events, and
time-domain and/or frequency-domain analysis of biomedical signals, study them, implement
them, test them with biomedical signals, and report on your own findings. The studies related to
the project must be your own.

If you wish to develop your own project, ensure that the following requirements are met:

• Your project involves the processing of real-life biomedical signals. Several signals are avail-
able on the website http://people.ucalgary.ca/~ranga/enel563/SIGNAL_DATA_FILES/

Refer to lab exercises in the textbook and the preceding sections of this document for details
regarding the signals and related lab exercises.

Signals of various types are available on the website http://www.physionet.org/physiobank/
made available by the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
an institute within the National Institutes of Health (NIH), USA.

• Your project includes at least two methods to filter and remove noise or artifacts (see
Chapter 3 of the textbook).

• Your project includes at least one method to detect and segment events, episodes, compo-
nents, or parts of the input signal(s) for further analysis (see Chapter 4 of the textbook).

• Your project includes at least three methods for parametric representation and quantitative
analysis of signals or their components (see Chapters 5 and 6 of the textbook).

• Your project includes at least one method for pattern classification and diagnostic interpre-
tation of signals or their components (see Chapter 9 of the textbook).

Wish you success with your project and studies!
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