CONTENTS

1

Abou	it the Au	thors	xvi
Fore	word by	Prof. Willis J. Tompkins	xviii
Fore	word by	Prof. Alan V. Oppenheim	xix
Prefa		xxii	
Ackn	owledgr	nents	xxviii
Syml	ools and	Abbreviations	хххі
Abou	it the Co	mpanion Website	xxxix
Intro	duction	to Biomedical Signals	1
1.1	The Na	ature of Biomedical Signals	1
1.2	Examp	oles of Biomedical Signals	4
	1.2.1	The action potential of a cardiac myocyte	5
	1.2.2	The action potential of a neuron	9
	1.2.3	The electroneurogram (ENG)	10
	1.2.4	The electromyogram (EMG)	12
	1.2.5	The electrocardiogram (ECG)	20
	1.2.6	The electroencephalogram (EEG)	29
	1.2.7	Event-related potentials (ERPs)	35
	1.2.8	The electrogastrogram (EGG)	36
	1.2.9	The phonocardiogram (PCG)	37

~

		1.2.10 The carotid pulse	40
		1.2.11 The photoplethysmogram (PPG)	41
		1.2.12 Signals from catheter-tip sensors	43
		1.2.13 The speech signal	44
		1.2.14 The vibroarthrogram (VAG)	48
		1.2.15 The vibromyogram (VMG)	52
		1.2.16 Otoacoustic emission (OAE) signals	52
		1.2.17 Bioacoustic signals	52
	1.3	Objectives of Biomedical Signal Analysis	52
	1.4	Challenges in Biomedical Signal Analysis	55
	1.5	Why Use Computer-aided Monitoring and Diagnosis?	58
	1.6	Remarks	60
	1.7	Study Questions and Problems	60
	1.8	Laboratory Exercises and Projects	62
	Refe	rences	63
2	Anal	ysis of Concurrent, Coupled, and Correlated Processes	71
	2.1	Problem Statement	71
	2.2	Illustration of the Problem with Case Studies	72
		2.2.1 The ECG and the PCG	72
		2.2.2 The PCG and the carotid pulse	73
		2.2.3 The ECG and the atrial electrogram	73
		2.2.4 Cardiorespiratory interaction	75
		2.2.5 Heart-rate variability	75
		2.2.6 The EMG and VMG	77
		2.2.7 The knee-joint and muscle-vibration signals	77
	2.3	Application: Segmentation of the PCG	78
	2.4	Application: Diagnosis and Monitoring of Sleep Apnea	79
		2.4.1 Monitoring of sleep apnea by polysomnography	80
		2.4.2 Home monitoring of sleep apnea	80
		2.4.3 Multivariate and multiorgan analysis	82
	2.5	Remarks	85
	2.6	Study Questions and Problems	85
	2.7	Laboratory Exercises and Projects	86
	Refe	rences	86
3	Filte	ring for Removal of Artifacts	91
	3.1	Problem Statement	91
	3.2	Random, Structured, and Physiological Noise	92
		3.2.1 Random noise	92
		3.2.2 Structured noise	98
		3.2.3 Physiological interference	98
		3.2.4 Stationary, nonstationary, and cyclostationary processes	99

3.3	Illustrat	tion of the Problem with Case Studies	101
	3.3.1	Noise in event-related potentials	102
	3.3.2	High-frequency noise in the ECG	102
	3.3.3	Motion artifact in the ECG	102
	3.3.4	Power-line interference in ECG signals	103
	3.3.5	Maternal ECG interference in fetal ECG	105
	3.3.6	Muscle-contraction interference in VAG signals	105
	3.3.7	Potential solutions to the problem	106
3.4	Fundan	nental Concepts of Filtering	106
	3.4.1	Linear shift-invariant filters and convolution	107
	3.4.2	Transform-domain analysis of signals and systems	117
	3.4.3	The pole–zero plot	123
	3.4.4	The Fourier transform	125
	3.4.5	The discrete Fourier transform	126
	3.4.6	Convolution using the DFT	131
	3.4.7	Properties of the Fourier transform	133
3.5	Synchro	onized Averaging	135
3.6	Time-d	omain Filters	139
	3.6.1	Moving-average filters	139
	3.6.2	Derivative-based operators to remove low-frequency artifacts	145
	3.6.3	Various specifications of a filter	152
3.7	Frequei	ncy-domain Filters	153
	3.7.1	Removal of high-frequency noise: Butterworth lowpass filters	154
	3.7.2	Removal of low-frequency noise: Butterworth highpass filters	161
	3.7.3	Removal of periodic artifacts: Notch and comb filters	162
3.8	Order-s	tatistic Filters	169
3.9	The Wi	ener Filter	171
3.10	Adaptiv	ve Filters for Removal of Interference	180
	3.10.1	The adaptive noise canceler	181
	3.10.2	The least-mean-squares adaptive filter	184
	3.10.3	The RLS adaptive filter	185
3.11	Selectin	ng an Appropriate Filter	190
3.12	Applica	ation: Removal of Artifacts in ERP Signals	193
3.13	Applica	ation: Removal of Artifacts in the ECG	196
3.14	Applica	ation: Maternal–Fetal ECG	197
3.15	Applica	ation: Muscle-contraction Interference	199
3.16	Remark	ΣS	202
3.17	Study (Questions and Problems	202
3.18	Laborat	tory Exercises and Projects	208
Refere	ences		209

4	Detection of Events				
	4.1	Problem Statement	213		

5

4.2	Illustra	ation of the Problem with Case Studies	214
	4.2.1	The P, QRS, and T waves in the ECG	214
	4.2.2	The first and second heart sounds	215
	4.2.3	The dicrotic notch in the carotid pulse	215
	4.2.4	EEG rhythms, waves, and transients	215
4.3	Detect	ion of Events and Waves	218
	4.3.1	Derivative-based methods for QRS detection	218
	4.3.2	The Pan–Tompkins algorithm for QRS detection	220
	4.3.3	Detection of the P wave in the ECG	224
	4.3.4	Detection of the T wave in the ECG	226
	4.3.5	Detection of the dicrotic notch	228
4.4	Correla	ation Analysis of EEG Rhythms	228
	4.4.1	Detection of EEG rhythms	228
	4.4.2	Template matching for EEG spike-and-wave detection	231
	4.4.3	Detection of EEG rhythms related to seizure	234
4.5	Cross-	spectral Techniques	235
	4.5.1	Coherence analysis of EEG channels	235
4.6	The M	atched Filter	237
	4.6.1	Derivation of the transfer function of the matched filter	237
	4.6.2	Detection of EEG spike-and-wave complexes	241
4.7	Homo	morphic Filtering	242
	4.7.1	Generalized linear filtering	244
	4.7.2	Homomorphic deconvolution	244
	4.7.3	Extraction of the vocal-tract response	245
4.8	Applic	ation: ECG Rhythm Analysis	253
4.9	Applic	ation: Identification of Heart Sounds	254
4.10	Applic	ation: Detection of the Aortic Component of S2	256
4.11	Remar	ks	259
4.12	Study	Questions and Problems	259
4.13	Labora	atory Exercises and Projects	261
Refer	ences		262
Analy	voio of M	lovoobana and Wayafarm Complexity	067
Analy			207
5.1	Proble	m Statement	267
5.2	Illustra	ation of the Problem with Case Studies	268
	5.2.1	The QRS complex in the case of bundle-branch block	268
	5.2.2	The effect of myocardial ischemia on QRS waveshape	268
	5.2.3	Ectopic beats	268
	5.2.4	Complexity of the EMG interference pattern	268
	5.2.5	PCG intensity patterns	269
5.3	Analys	sis of ERPs	269
5.4	Morph	ological Analysis of ECG Waves	269
	5.4.1	Correlation coefficient	270

	5.4.2	The minimum-phase correspondent and signal length	270
	5.4.3	ECG waveform analysis	274
5.5	Envelop	be Extraction and Analysis	277
	5.5.1	Amplitude demodulation	278
	5.5.2	Synchronized averaging of PCG envelopes	280
	5.5.3	The envelogram	281
5.6	Analysi	is of Activity	283
	5.6.1	The <i>RMS</i> value	283
	5.6.2	Zero-crossing rate	285
	5.6.3	Turns count	285
	5.6.4	Form factor	286
5.7	Applica	ation: Normal and Ectopic ECG Beats	287
5.8	Applica	ation: Analysis of Exercise ECG	288
5.9	Applica	ation: Analysis of the EMG in Relation to Force	290
5.10	Applica	ation: Analysis of Respiration	292
5.11	Applica	ation: Correlates of Muscular Contraction	294
5.12	Applica	ation: Statistical Analysis of VAG Signals	295
	5.12.1	Acquisition of knee-joint VAG signals	297
	5.12.2	Estimation of the PDFs of VAG signals	297
	5.12.3	Screening of VAG signals using statistical parameters	299
5.13	Applica	ation: Fractal Analysis of the EMG in Relation to Force	302
	5.13.1	Fractals in nature	302
	5.13.2	Fractal dimension	303
	5.13.3	Fractal analysis of physiological signals	304
	5.13.4	Fractal analysis of EMG signals	305
5.14	Remark	XS	306
5.15	Study (Questions and Problems	307
5.16	Laborat	tory Exercises and Projects	309
Refer	ences		310
Frequ	iency-do	main Characterization of Signals and Systems	317
(1	Duel 1		210
6.1	Problem	n Statement	318
6.2	Illustrat	tion of the Problem with Case Studies	318
	6.2.1	I ne effect of myocardial elasticity on heart sound spectra	518
()	6.2.2 E	Frequency analysis of murmurs to diagnose valvular detects	319
6.3	Estimat	tion of the PSD	321
	6.3.1	Considerations in the computation of the ACF	321
	6.3.2	The periodogram	323

	0.5.2		545
	6.3.3	The need for averaging PSDs	325
	6.3.4	The use of windows: spectral resolution and leakage	326
	6.3.5	Estimation of the ACF from the PSD	330
	6.3.6	Synchronized averaging of PCG spectra	331
6.4	Measu	res Derived from PSDs	333

6

	6.4.1	Moments of PSD functions	334
	6.4.2	Spectral power ratios	337
6.5	Applic	ation: Evaluation of Prosthetic Heart Valves	337
6.6	Applic	ation: Fractal Analysis of VAG Signals	339
	6.6.1	Fractals and the $1/f$ model	339
	6.6.2	FD via power spectral analysis	341
	6.6.3	Examples of synthesized fractal signals	341
	6.6.4	Fractal analysis of segments of VAG signals	342
6.7	Applic	ation: Spectral Analysis of EEG Signals	345
6.8	Remar	ks	349
6.9	Study	Questions and Problems	350
6.10	Labora	tory Exercises and Projects	351
References			353

7	Mode	ling of E	Biomedical Signal-generating Processes and Systems	357	
	7.1	Proble	m Statement	357	
	7.2	Illustration of the Problem			
		7.2.1	Motor-unit firing patterns	358	
		7.2.2	Cardiac rhythm	358	
		7.2.3	Formants and pitch in speech	359	
		7.2.4	Patellofemoral crepitus	360	
	7.3	Point I	Processes	360	
	7.4	Param	etric System Modeling	365	
	7.5	Autore	egressive or All-pole Modeling	369	
		7.5.1	Spectral matching and parameterization	374	
		7.5.2	Optimal model order	377	
		7.5.3	AR and cepstral coefficients	384	
	7.6	Pole-Z	Zero Modeling	384	
		7.6.1	Sequential estimation of poles and zeros	387	
		7.6.2	Iterative system identification	389	
		7.6.3	Homomorphic prediction and modeling	393	
	7.7	Electro	omechanical Models of Signal Generation	395	
		7.7.1	Modeling of respiratory sounds	396	
		7.7.2	Modeling sound generation in coronary arteries	400	
		7.7.3	Modeling sound generation in knee joints	402	
	7.8	Electro	ophysiological Models of the Heart	404	
		7.8.1	Electrophysiological modeling at the cellular level	405	
		7.8.2	Electrophysiological modeling at the tissue and organ levels	410	
		7.8.3	Extensions to the models of the heart	412	
		7.8.4	Challenges and future considerations in modeling the heart	414	
	7.9	Application: Heart-rate Variability			
	7.10	Application: Spectral Modeling and Analysis of PCG Signals 4			
	7.11	Applic	ation: Coronary Artery Disease	421	

CONTENTS	xiii

	7.12	Remarks				
	7.13	Study Q	Questions and Problems	424		
	7.14	4 Laboratory Exercises and Projects				
	Refer	ences		426		
8	Adap	tive Anal	lysis of Nonstationary Signals	431		
	8.1	Problem	n Statement	432		
	8.2	Illustrat	tion of the Problem with Case Studies	432		
		8.2.1	Heart sounds and murmurs	432		
		8.2.2	EEG rhythms and waves	433		
		8.2.3	Articular cartilage damage and knee-joint vibration	433		
	8.3	Time-va	ariant Systems	435		
		8.3.1	Characterization of nonstationary signals and dynamic system	ns 436		
	8.4	Fixed S	Segmentation	438		
		8.4.1	The short-time Fourier transform	438		
		8.4.2	Considerations in short-time analysis	441		
	8.5	Adaptiv	ve Segmentation	445		
		8.5.1	Spectral error measure	445		
		8.5.2	ACF distance	450		
		8.5.3	The generalized likelihood ratio	450		
		8.5.4	Comparative analysis of the ACF, SEM, and GLR methods	452		
	8.6	Use of	Adaptive Filters for Segmentation	452		
		8.6.1	Monitoring the RLS filter	453		
		8.6.2	The RLS lattice filter	456		
	8.7	The Ka	lman Filter	463		
	8.8	Wavele	t Analysis	474		
		8.8.1	Approximation of a signal using wavelets	474		
	8.9	Bilinea	r TFDs	479		
	8.10	Applica	ation: Adaptive Segmentation of EEG Signals	485		
	8.11	Applica	ation: Adaptive Segmentation of PCG Signals	489		
	8.12	Applica	ation: Time-varying Analysis of HRV	490		
	8.13	Applica	ation: Analysis of Crying Sounds of Infants	493		
	8.14	Applica	ation: Wavelet Denoising of PPG Signals	493		
	8.15	Applica	ation: Wavelet Analysis for CPR Studies	494		
	8.16	Applica	ation: Detection of Ventricular Fibrillation in ECG Signals	499		
	8.17	Applica	ation: Detection of Epileptic Seizures in EEG Signals	503		
	8.18	Applica	ation: Neural Decoding for Control of Prostheses	505		
	8.19	Remark	KS	506		
	8.20	Study (Questions and Problems	507		
	8.21	Laborat	tory Exercises and Projects	507		
	Refer	References				

9	Signal	Analysi	s via Adaptive Decomposition	515		
	9.1	Problem	Statement	517		
	9.2	Illustrati	ion of the Problem with Case Studies	517		
		9.2.1	Separation of the fetal ECG from a single-channel abdominal			
			ECG	517		
		9.2.2	Patient-specific EEG channel selection for BCI applications	518		
		9.2.3	Detection of microvolt T-wave alternans in long-term ECG			
			recordings	518		
	9.3	Matchin	g Pursuit	518		
	9.4	Empiric	al Mode Decomposition	520		
		9.4.1	Variants of empirical mode decomposition	521		
	9.5	Dictiona	ary Learning	523		
	9.6	Decomp	oosition-based Adaptive TFD	525		
	9.7	Separati	on of Mixtures of Signals	531		
		9.7.1	Principal component analysis	533		
		9.7.2	Independent component analysis	539		
		9.7.3	Nonnegative matrix factorization	542		
		9.7.4	Comparison of PCA, ICA, and NMF	546		
	9.8	Applicat	tion: Detection of Epileptic Seizures Using Dictionary			
		Learning	g Methods	553		
	9.9	Applicat	tion: Adaptive Time–Frequency Analysis of VAG Signals	560		
	9.10	Applicat	tion: Detection of T-wave Alternans in ECG Signals	568		
	9.11	Applicat	tion: Extraction of the Fetal ECG from Single-channel			
		Materna	l ECG	572		
	9.12	Applicat	tion: EEG Analysis for Brain–Computer Interfaces	577		
		9.12.1	NMF-based channel selection	579		
		9.12.2	Feature extraction	579		
	9.13	Remarks				
	9.14	Study Q	uestions and Problems	586		
	9.15	Laborate	ory Exercises and Projects	586		
	Refere	ferences				
10	Comp	Computer-aided Diagnosis and Healthcare				
	10.1	Problem	Statement	596		
	10.2	Illustrati	ion of the Problem with Case Studies	596		
		10.2.1	Diagnosis of bundle-branch block	596		
		10.2.2	Normal or ectopic ECG beat?	597		
		10.2.3	Is there an alpha rhythm?	598		
		10.2.4	Is a murmur present?	598		
		10.2.5	Detection of sleep apnea using multimodal biomedical signals	598		
	10.3	Pattern (Classification	599		
	10.4	Supervis	sed Pattern Classification	600		
		10.4.1	Discriminant and decision functions	600		
		10.4.2	Fisher linear discriminant analysis	601		
			-			

	10.4.3 Distance functions	605
	10.4.4 The nearest-neighbor rule	605
	10.4.5 The support vector machine	606
10.5	5 Unsupervised Pattern Classification	607
	10.5.1 Cluster-seeking methods	607
10.	6 Probabilistic Models and Statistical Decision	611
	10.6.1 Likelihood functions and statistical decision	611
	10.6.2 Bayes classifier for normal patterns	613
10.7	7 Logistic Regression Analysis	614
10.	8 Neural Networks	615
	10.8.1 ANNs with radial basis functions	617
	10.8.2 Deep learning	620
10.9	9 Measures of Diagnostic Accuracy and Cost	620
	10.9.1 Receiver operating characteristics	623
	10.9.2 McNemar's test of symmetry	625
10.1	10 Reliability of Features, Classifiers, and Decisions	627
	10.10.1 Separability of features	628
	10.10.2 Feature selection	630
	10.10.3 The training and test steps	631
10.1	11 Application: Normal versus Ectopic ECG Beats	633
	10.11.1 Classification with a linear discriminant function	633
	10.11.2 Application of the Bayes classifier	637
	10.11.3 Classification using the <i>K</i> -means method	637
10.	12 Application: Detection of Knee-joint Cartilage Pathology	637
10.	13 Application: Detection of Sleep Apnea	644
10.	14 Application: Monitoring Parkinson's Disease Using Multimodal	
	Signal Analysis	647
10.	15 Strengths and Limitations of CAD	650
10.	16 Remarks	656
10.	17 Study Questions and Problems	657
10.	18 Laboratory Exercises and Projects	658
Ret	Ferences	659
Index		665